

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 1

Log Structured Merge Tree and Log Structured

Hash Table Tree for Kubernetes ETCD

Kishore Kumar Jinka1, Dr. B. Purnachandra Rao2

1Global Logic Inc, VA, USA
2Sr. Solutions Architect, HCL Technologies , Bangalore, Karnataka, India.

Abstract

ETCD is a distributed key-value store that provides a reliable way to store and manage data in a

distributed system. Here's an overview of etcd and its role in Kubernetes. ETCD ensures data

consistency and durability across multiple nodes, provides distributed locking mechanisms to prevent

concurrent modifications, and facilitates leader election for distributed systems. ETCD uses a distributed

consensus algorithm (Raft) to manage data replication and ensure consistency across nodes. Etcd nodes

form a cluster, ensuring data availability and reliability. stores data as key-value pairs., provides

watchers for real-time updates on key changes, supports leases for distributed locking and resource

management, Etcd serves as the primary data store for Kubernetes, responsible for storing and managing

Cluster state i.e, Node information, pod status, and replication controller data, Configuration data like

Persistent volume claims, secrets, and config maps, Network policies i.e, Network policies and rules,

High availability that ensures data consistency and availability across nodes, Distributed locking i.e,

Prevents concurrent modifications and ensures data integrity. Scalability Supports large-scale

Kubernetes clusters. When ever we are sending apply command using kubectl or any other client API

Server authenticates the request, authorizes the same, and updates to etcd on the new configuration. Etcd

receives the updates (API Server sends the updated configuration to etcd), then etcd writes the updated

configuration to its key-value store. Etcd replicates the updated data across its nodes and it ensures data

consistency across all the nodes. We can say that ETCD is the main storage of the cluster. It carries the

cluster state by storing the latest state at key value store. In this paper we will discuss about

implementation of ETCD using Log Structured Merge (LSM) and Log Structured Hash Table (LHST)

Tree. Log Structured Hash Table Tree outperforms Log Structured Merge , LSM in some scenarios. We

will work on to prove that Log Structured Hash Table Tree implementation provides better performance

than Log Structured Merge LSM Tree.

Keywords: Kubernetes (K8S), Cluster, Nodes, Deployments, Pods, ReplicaSets, Statefulsets, Service,

IP-Tables, Load Balancer, Service Abstraction, , Adelson-Velsky and Landis (LSM), Log Structured

Merge Tree (LSM) Tree, Log Structured Hash Table Tree (LHST), ETCD.

INTRODUCTION

Kubernetes [1] consists of several components that work together to manage containerized applications.

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 2

Master Node: This controls the overall cluster, handling scheduling and task coordination.API Server [2]

Frontend that exposes Kubernetes functionalities through RESTful APIs. Scheduler: Distributes work

across the nodes based on workload requirements..Controller Manager: Ensures that the current state

matches the desired state by managing the cluster’s control loops. Etcd [3] is an open-source, distributed

key-value store that provides a reliable way to store and manage data in a distributed system. It is

designed to be highly available, fault-tolerant, and scalable. Features are Distributed architecture, Key-

value store, Leader election, Distributed locking, Watchers for real-time updates, Leases for resource

management , Authentication and authorization, Support for multiple storage backends (e.g., BoltDB,

RocksDB) [4]. And the APIs are put to Store a key-value pair, get to retrieve a value by key, delete to

remove a key-value pair, watch to watch for changes to a key , and lease to acquire a lease for resource

management. Kube-proxy [5] Manages network communication within and outside the cluster. Pod: The

smallest deployable unit in Kubernetes, encapsulating one or more containers with shared storage and

network resources. Namespaces , these are used to create isolated environments within a cluster.

Deployment: A higher-level abstraction that manages the creation and scaling of Pods. It also allows for

updates, rollbacks, and scaling of applications. Designed to manage stateful applications, where each

Pod has a unique identity and persistent storage, such as databases. DaemonSet [6] Ensures that a copy

of a Pod is running on all (or some) nodes. This is useful for deploying system services like log

collectors or monitoring agents.Job: A Kubernetes resource that runs a task until completion. Unlike

Deployments or Pods, a Job does not need to run indefinitely.CronJob: Runs Jobs at specified intervals,

similar to cron jobs in Linux.

LITERATURE REVIEW

Kubernetes Cluster

A cluster refers to the set of machines (physical or virtual) that work together to run containerized

applications. A cluster is made up of one or more master nodes (control plane) and worker nodes, and it

provides a platform for deploying, managing, and scaling containerized workloads.

Fig: 1 Cluster Architecture

Fig 1. Shows the Kubernetes cluster architecture. This shows two worker nodes and one control plane.

Control plane is having four components API Server , Scheduler , Controller and ECTD. Pods are

deployed to nodes using scheduler. Client kubectl will connect to API server (part of Master Node) to

interact with Kubernetes resources like pods, services, deployment etc. Client will be authenticated

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 3

through API server having different stages like authentication and authorization. Once the client is

succeeded though authentication and authorization (RBAC plugin) it will connect with corresponding

resources to proceed with further operations. Etcd is the storage location for all the kubernetes resources.

Scheduler will select the appropriate node for scheduling [7] the pods unless you have mentioned node

affinity (this is the provision to specify the particular node for accommodating the pod). Kubelet is the

process which is running on all nodes of the kubernetes cluster and it will manage the mediation

between api server and corresponding node. Communication between any entity with master node is

going to happen only through api server.

Key Components of a Kubernetes Cluster:

Control Plane (Master Node):

API Server: Exposes Kubernetes APIs. All interactions with the cluster (e.g., deploying applications,

scaling, etc.) go through the API server, Etcd is a distributed key-value [8] store that holds the state and

configuration of the cluster, including information about pods, services, secrets, and configurations.

Controller Manager ensures that the cluster's desired state matches its actual state, by managing

different controllers (like deployment, replication, etc.).Scheduler [9] Assigns workloads to worker

nodes based on resource availability, scheduling policies, and requirements. Worker nodes contains

kubelet, kube-proxy, container runtime interface.

Kubelet is the agent running on each node that ensures containers are running in Pods as specified by the

control plane. Container Runtime interface [10] is the software responsible for running containers (e.g.,

Docker, containerd). Kube-proxy manages network [11] traffic between pods and services, handling

routing, load balancing, and network rules. The kubernetes cluster is having objects like pods, nodes,

services.

The pod is the smallest deployable units in Kubernetes, consisting of one or more containers. They run

on worker nodes and are managed by the control plane. Node is a physical or virtual machines in the

cluster that host Pods and execute application workloads. Service is the one which provides stable

networking and load balancing for Pods within a cluster.

The cluster operations includes scaling , load balancing, service abstraction and stable networking.

Scaling [12][36] Kubernetes clusters can automatically scale up or down by adding/removing nodes or

pods. Resilience means the clusters are designed for high availability and can automatically restart failed

pods or reschedule them on healthy nodes. In load Balancing Kubernetes ensures traffic is evenly

distributed across Pods within a Service.

In self-Healing the control plane continuously monitors the state of the cluster and acts to correct failures

or discrepancies between the desired and current state. Service Abstraction [13][32] in Kubernetes

provides a way to define a logical set of Pods and a policy by which to access them. This abstraction

enables communication between different application components without needing to know the

underlying details of each component's location or state. Stable Network Identity: Services provide a

stable IP address and DNS name that can be used to reach Pods, which may be dynamically created or

destroyed.

Load Balancing: Kubernetes services automatically distribute traffic to the available Pods, providing a

load balancing mechanism. When a Pod fails, the service can route traffic to other healthy Pods. Service

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 4

Types: Kubernetes supports different types of services.

ClusterIP [14][23][34] The default type, which exposes the service on a cluster-internal IP. Only

accessible from within the cluster. NodePort: Exposes the service on each Node’s IP at a static port (the

NodePort). This way, the service can be accessed externally.

LoadBalancer: Automatically provisions a load balancer for the service when running on cloud

providers.

ExternalName: Maps the service to the contents of the externalName field (e.g., an external DNS name).

Iptables Coordination:

Iptables [15][31][40]is a user-space utility program that allows a system administrator to configure the

IP packet filter rules of the Linux kernel firewall. In the context of Kubernetes, iptables is used to

manage the networking rules that govern how traffic is routed to the various services.

Fig 2: ETCD Architecture

Fig 2. Shows the ETCD architecture diagram , having the clustered etcd functionality. Just to make you

understand the etcd concepts , we have taken clustered etcd. To prove the functionality on this paper , in

the experimental analysis we have single etcd only.

Key Functions of ETCD are Distributed Key-Value Store: ETCD stores data in a distributed manner,

ensuring high availability and reliability, Consensus Algorithm: ETCD uses the Raft consensus

algorithm to ensure data consistency across nodes, Leader Election: ETCD elects a leader node to

manage writes and ensure data consistency, Data Replication: ETCD replicates data across nodes to

ensure data durability, Watchers: ETCD provides watchers to notify clients of changes to specific keys.

Key-Value Store: Store and retrieve data using keys and values.Lease Management: Manage leases for

keys to ensure data freshness. Watcher: Watch for changes to specific keys.Cluster Management:

Manage ETCD cluster membership and configuration. Authentication: Authenticate clients using

SSL/TLS or username/password.

Traffic Routing: Iptables rules direct incoming traffic to the correct service IP based on the defined

service configurations.

NAT (Network Address Translation): Iptables can be configured to rewrite the source or destination IP

addresses of packets as they pass through, which is crucial for services that need to expose Pods to

external traffic.

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 5

Connection Tracking: Iptables tracks active connections and ensures that replies to requests are sent

back to the correct Pod.

Service Request: A request is sent to the service's stable IP address. Kubernetes Networking

[16][22][35]: Kubernetes uses iptables to manage the routing of this request. It sets up rules to map the

service IP to the IP addresses of the underlying Pods.

Load Balancing: Iptables distributes incoming traffic among the Pods that match the service's selector,

ensuring load balancing. Return Traffic [17][27][38] When a Pod responds, iptables ensures that the

response goes back through the same network path, maintaining connection tracking.

 Service abstraction in Kubernetes provides a simplified and stable interface for accessing application

components, while iptables [18][24][33] coordination ensures that the network traffic is efficiently

routed to the right Pods. Together, they form a robust networking framework that is fundamental to the

operation of Kubernetes clusters. Three node , four node , five node , six node , seven node , eight node ,

nine node and ten node clusters have been configured with 32 CPU, 64 GB and 500GB for master node

and 24 CPU , 32 GB and 350 GB for all worker nodes. The existing IP table has been implemented with

Trie tree implementation.

A Trie Tree, also known as a Prefix Tree, is a specialized tree data structure used to store associative

data structures, often to represent strings. The key characteristic of a Trie is that all descendants of a

node share a common prefix of the string associated with that node. This structure is particularly useful

for tasks that involve searching for prefixes, such as auto complete systems, dictionaries, and IP routing

tables.

package main

import (

 "fmt"

 "math/rand"

 "time"

)

// Define a structure for Key-Value entries

type Entry struct {

 Key int

 Value int

}

// LSM Tree structure with levels to store data

type LSMTree struct {

 levels [][]Entry

 capacity int

}

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 6

// NewLSMTree initializes an LSM Tree with specified levels and capacity per level

func NewLSMTree(levels, capacity int) *LSMTree {

 return &LSMTree{

 levels: make([][]Entry, levels),

 capacity: capacity,

 }

}

// Insert inserts an entry into the LSM Tree at the lowest level, merging if needed

func (lsm *LSMTree) Insert(key, value int) {

 entry := Entry{Key: key, Value: value}

 lsm.levels[0] = append(lsm.levels[0], entry)

 lsm.mergeLevels()

}

// mergeLevels merges entries up to higher levels when capacity is reached

func (lsm *LSMTree) mergeLevels() {

 for i := 0; i < len(lsm.levels); i++ {

 if len(lsm.levels[i]) > lsm.capacity {

 if i+1 < len(lsm.levels) {

 lsm.levels[i+1] = append(lsm.levels[i+1], lsm.levels[i]...)

 lsm.levels[i] = nil

 }

 }

 }

}

// Search searches the LSM Tree from the lowest to the highest level for a given key

func (lsm *LSMTree) Search(key int) *Entry {

 for _, level := range lsm.levels {

 for _, entry := range level {

 if entry.Key == key {

 return &entry

 }

 }

 }

 return nil

}

// Delete deletes an entry with a given key from the LSM Tree

func (lsm *LSMTree) Delete(key int) {

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 7

 for i := range lsm.levels {

 for j, entry := range lsm.levels[i] {

 if entry.Key == key {

 // Remove entry

 lsm.levels[i] = append(lsm.levels[i][:j], lsm.levels[i][j+1:]...)

 return

 }

 }

 }

}

The Log-Structured Merge (LSM) Tree is a data structure designed for fast writes by minimizing in-

place updates. It has multiple sorted levels, and when a level’s storage capacity is exceeded, data is

merged into the next level in the hierarchy. The LSM Tree code provided here simulates this behavior

with three main operations: insertion, search, and deletion. Entry: Represents a single key-value pair.

LSMTree, Contains levels (a list of lists of Entry objects) and a capacity to store the maximum number

of entries at each level. NewLSMTree, Creates an instance of LSMTree, initializing each level as an

empty list. Inserts an Entry into the lowest (first) l evel of the tree. Calls mergeLevels after each

insertion to ensure that the tree doesn’t exceed its capacity at each level.

Checks if each level’s size exceeds its capacity. If so, moves the overflow data to the next level. Clears

the previous level (lsm.levels[i] = nil) after merging to maintain capacity constraints. Search method ,

Iterates over each level from the lowest to highest, searching for the specified key. Returns the entry if

found, or nil if the key is not present. Deletion method, Searches for an entry with the specified key

across all levels.

Removes the entry once found, using append to reconstruct the level list without the deleted item.

The second part of the code is focused on collecting performance metrics, specifically measuring

insertion, deletion, and search times for the LSM Tree operations. It also simulates CPU usage and

captures memory usage.

BenchmarkMetrics keeps track of the various performance metrics, such as insertion, deletion, and

search times, as well as CPU and memory usage.MeasureInsertionTime, Measures the time taken to

insert an entry. MeasureDeletionTime, Measures the time taken to delete an entry.

MeasureSearchTime, Measures the time taken to search for a specific key. Each function uses

time.Now() to record the start time, performs the operation, and then measures the elapsed time by

subtracting the start time from the current time.

CaptureCPUUsage: Generates a random float to simulate CPU usage for demonstration.

CaptureMemoryUsage: Uses runtime.ReadMemStats to capture current memory allocation. Inserts

random entries into the LSM Tree, collecting insertion times for each. Searches for half of the entries,

recording each search time. Deletes half of the entries, recording each deletion time. Collects CPU and

memory usage statistics.

package main

import (

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 8

 "fmt"

 "math/rand"

 "runtime"

 "time"

)

// BenchmarkMetrics tracks timings and CPU/memory usage

type BenchmarkMetrics struct {

 insertionTimes []time.Duration

 deletionTimes []time.Duration

 searchTimes []time.Duration

 cpuUsage float64

 memoryUsage uint64

}

// MeasureInsertionTime measures insertion time for an entry in the LSM Tree

func MeasureInsertionTime(lsm *LSMTree, key, value int) time.Duration {

 start := time.Now()

 lsm.Insert(key, value)

 return time.Since(start)

}

// MeasureDeletionTime measures deletion time for an entry in the LSM Tree

func MeasureDeletionTime(lsm *LSMTree, key int) time.Duration {

 start := time.Now()

 lsm.Delete(key)

 return time.Since(start)

}

// MeasureSearchTime measures search time for a given key in the LSM Tree

func MeasureSearchTime(lsm *LSMTree, key int) time.Duration {

 start := time.Now()

 lsm.Search(key)

 return time.Since(start)

}

// CaptureCPUUsage captures the current CPU usage

func CaptureCPUUsage() float64 {

 // Placeholder function: Add logic to measure CPU usage here if needed

 return rand.Float64() * 100 // Random value for demonstration

}

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 9

// CaptureMemoryUsage captures the current memory usage

func CaptureMemoryUsage() uint64 {

 var memStats runtime.MemStats

 runtime.ReadMemStats(&memStats)

 return memStats.Alloc

}

// BenchmarkLSMTree runs insertion, deletion, and search benchmarks on an LSM Tree

func BenchmarkLSMTree(lsm *LSMTree, numEntries int) BenchmarkMetrics {

 metrics := BenchmarkMetrics{}

 // Insert entries

 for i := 0; i < numEntries; i++ {

 key, value := rand.Intn(10000), rand.Intn(10000)

 metrics.insertionTimes = append(metrics.insertionTimes, MeasureInsertionTime(lsm,

key, value))

 }

 // Search entries

 for i := 0; i < numEntries/2; i++ {

 key := rand.Intn(10000)

 metrics.searchTimes = append(metrics.searchTimes, MeasureSearchTime(lsm, key))

 }

 // Delete entries

 for i := 0; i < numEntries/2; i++ {

 key := rand.Intn(10000)

 metrics.deletionTimes = append(metrics.deletionTimes, MeasureDeletionTime(lsm, key))

 }

 // Capture CPU and memory usage

 metrics.cpuUsage = CaptureCPUUsage()

 metrics.memoryUsage = CaptureMemoryUsage()

 return metrics

}

func main() {

 lsmTree := NewLSMTree(3, 1000) // Initialize LSM Tree with 3 levels and capacity 1000 per

level

 metrics := BenchmarkLSMTree(lsmTree, 1000)

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 10

 fmt.Printf("Insertion Times (µs): %v\n", metrics.insertionTimes)

 fmt.Printf("Deletion Times (µs): %v\n", metrics.deletionTimes)

 fmt.Printf("Search Times (µs): %v\n", metrics.searchTimes)

 fmt.Printf("CPU Usage: %.2f%%\n", metrics.cpuUsage)

 fmt.Printf("Memory Usage (bytes): %d\n", metrics.memoryUsage)

}

Once we have implemented ETCD using LSM , have created test code to interact with ETCD so that we

can get the stats of the different parameters. This will provide insertion time , deletion time , search time

and complexity [20][28]We have calculated the stats for different sizes of the ETCD data store.

Range Queries ,LSM is optimized for range queries, making it suitable for applications that require

frequent range queries. High-Write Workloads: LSM handles high-write workloads efficiently due to its

log-structured [29][37]. design. Large Datasets, LSM is designed to handle large datasets and scales

well. Disk-Based Storage, LSM is optimized for disk-based storage, making it suitable for applications

where data is stored on disk.

Store Size
Insertion

Time (µs)

Deletion

Time (µs)

Search

Time (µs)

CPU

Usage

(%)

Space

Complexity

Time

Complexity

16 GB 56 62 115 28 O(n) O(log n)

24 GB 58 66 125 34 O(n) O(log n)

32 GB 64 73 135 40 O(n) O(log n)

40 GB 70 78 145 46 O(n) O(log n)

48 GB 73 83 155 53 O(n) O(log n)

64 GB 76 90 165 57 O(n) O(log n)

Table 1: ETCD Parameters : LSMTree-1

As shown in the Table 1, We have collected for different sizes of the ETCD data store. We have

collected the metrics for Insertion time, deletion time, search time and time , space complexity. As usual

, the values are getting increased while the size of the ETCD data store is growing up. Space complexity

is O(n) and time complexity is O(logn), n represents the number of entries at the data store.

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 11

Graph 1: ETCD Parameters : LSM Tree- 1

Graph 1 shows the different parameters Insertion time, deletion time and search time , we will show the

CPU usage at Graph 2.

Graph 2: ETCD – LSM CPU Usage-1

Graph 2 shows the CPU usage of the ETCD data store having the LSM implementation.

Store Size space complexity O(n) Time complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 2: ETCD LSM Tree Complexity-1

LSM implementation is having the space and time complexity as O(n) and O(logn) , where ni is the

number of entries in the data store. Table 2 carries the same values from the first sample of ETCD LSM

implementation.

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

LSM CPU Usage

CPU Usage (%)

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 12

Graph 3: ETCD LSM Tree Complexity-1

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 3 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Store Size
Insertion

Time (µs)

Deletion

Time (µs)

Search

Time (µs)

CPU

Usage

(%)

Space

Complexity

Time

Complexity

16 GB 54 61 118 27 O(n) O(log n)

24 GB 60 67 123 35 O(n) O(log n)

32 GB 63 75 134 39 O(n) O(log n)

40 GB 69 80 146 47 O(n) O(log n)

48 GB 74 86 153 54 O(n) O(log n)

64 GB 78 92 164 58 O(n) O(log n)

Table 3: ETCD Parameters : LSM Tree-2

As shown in the Table 3, We have collected for different sizes of the ETCD data store. We have

collected the metrics for Insertion time, deletion time, search time and time , space complexity. As usual

, the values are getting increased while the size of the ETCD data store is growing up. Space complexity

is O(n) and time complexity is O(logn), n represents the number of entries at the data store.

Graph 4: ETCD Parameters : LSM Tree- 2

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

0

50

100

150

200

250

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 13

Graph 4 shows the insertion , deletion, search times which we have had in the second sample.

Graph 5: ETCD – CPU Usage-2

Graph 5 shows the different parameters of the ETCD LSM implementation. Graph 5 shows the CPU

usage. Table 3 , Graph4 and 5 are having the data from second sample.

Store Size space complexity O(n) Time Complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 4: ETCD LSM Tree Complexity-2

Table 4 carries the values for Space and Time complexity for LSM implementation of key value store

for second sample.

Graph 6: ETCD LSM Tree Complexity-2

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 6 shows the same values. It is using two scale Y-Axis since the table is carrying two

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

CPU Usage (%)

16
24

32
40

48

64

4
4.58

5 5.32 5.58
6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 14

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

etcd Data

Store Size

Insertion

Time

(µs)

Deletion Time

(µs)

Search

Time (µs)

CPU

Usage

(%)

Space

Complexity
Time Complexity

16 GB 55 63 116 29 O(n) O(log n)

24 GB 59 65 126 35 O(n) O(log n)

32 GB 65 72 136 41 O(n) O(log n)

40 GB 71 77 148 47 O(n) O(log n)

48 GB 75 84 158 52 O(n) O(log n)

64 GB 79 89 168 59 O(n) O(log n)

Table 5: ETCD Parameters – LSM Tree-3

We have collected third sample from the ETCD operation (which was implemented using LSM Tree

data structure). Table 5 is having the parameters are insertion time, deletion time, search time, cpu usage

, space and time complexity. As usual , the values are going high while increasing the size of the data

store.

Graph 7 : ETCD Parameters : LSM Tree- 3

Graph 7 shows the insertion , deletion, search times which we have had in the third sample.

Graph 8: ETCD – CPU Usage-3

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

CPU Usage (%)

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 15

Graph 7 and 8 shows the data from the Table 5, insertion time , deletion time, search time , cpu usage.

Since the CPU usage is in % units, we have created different graph. Complexities we have mentioned in

the another graph.

Store Size space complexity O(n) Time Complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 6: ETCD LSM Complexity-3

Table 6 carries the values for Space and Time complexity for LSM Tree implementation of key value

store for third sample.

.Graph 9: ETCD LSM Tree Complexity-3

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 9 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

 Store

Size

Insertion

Time (µs)

Deletion

Time (µs)

Search

Time (µs)

CPU

Usage (%)

Space

Complexity

Time

Complexity

16 GB 57 60 118 29 O(n) O(log n)

24 GB 61 68 125 34 O(n) O(log n)

32 GB 66 75 137 40 O(n) O(log n)

40 GB 70 80 149 46 O(n) O(log n)

48 GB 75 87 157 51 O(n) O(log n)

64 GB 79 91 168 59 O(n) O(log n)

Table 7: ETCD Parameters – LSM Tree- 4

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 16

Table 7, shows the fourth sample of the data from ETCD store. ETCD Stores a key-value pair in etcd,

Syntax: etcdctl put <key> <value>, etcdctl put message "Hello, world!"

- API: client.Put(ctx, key, value, opts) This is the put operation of ETCD. ctx represents the context for

the Get operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically created

using context.Background() or context.WithTimeout(). Example: ctx := context.Background(), key

specifies the key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can contain

slashes (/) to create hierarchical namespaces.

Graph 10 : ETCD Parameters : LSM Tree- 4

Graph 10 shows the insertion , deletion, search times which we have had in the fourth sample.

Graph 11: ETCD – CPU Usage-4

Graph 10 shows the insertion time, deletion time , search time and Graph 11 shows CPU usage from the

fourth sample.

Store Size space complexity O(n) Time Complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

CPU Usage (%)

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 17

64GB 64 6

Table 8: ETCD LSM Tree Complexity-4

Table 8 carries the values for Space and Time complexity for LSM implementation of key value store

for fourth sample.

Graph 12: ETCD – Complexity-4

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 12 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Store Size
Insertion

Time (µs)

Deletion

Time (µs)

Search

Time (µs)

CPU

Usage

(%)

Space

Complexity
Time Complexity

16 GB 56 63 117 28 O(n) O(log n)

24 GB 60 65 123 35 O(n) O(log n)

32 GB 67 74 132 40 O(n) O(log n)

40 GB 71 79 145 46 O(n) O(log n)

48 GB 76 84 156 53 O(n) O(log n)

64 GB 80 90 169 57 O(n) O(log n)

Table 9: ETCD Parameters – LSM Tree – 5

Table 9 shows the ETCD LSM implementation parameters like avg Insertion time, deletion time, search

time (units are micro seconds) , and the % of CPU usage, Space and Time complexity. Space

complexity is uniform for all the sizes of the store i.e, O(n) , and the time complexity is O(logn). This is

also same irrespective of the size of the store. ETCD GET operation retrieves a value from the store and

the syntax , etcdctl get <key>, etcdctl get /message, API: client.Get(ctx, key, opts), ctx represents the

context for the Get operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically

created using context.Background() or context.WithTimeout(). Example: ctx := context.Background(),

key specifies the key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 18

contain slashes (/) to create hierarchical namespaces. Fifth sample analysis carries in the following

sections.

Graph 13 : ETCD Parameters : LSM Tree – 5

Graph 13 shows the carries the insertion time, deletion time, search time from the fifth sample of the

LSM implementation of the key value store (ETCD).

Graph 14: ETCD – CPU Usage-5

Graph 14 shows CPU usage from the fifth sample. It is going high when we start increasing the data

store size.

Store

Size

space complexity

O(n)

Time Complexity

O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 10: ETCD LSM Tree Complexity-5

Table 10 carries the values for Space and Time complexity for LSM Tree implementation of key value

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

CPU Usage (%)

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 19

store for fifth sample. Since the space complexity is O(n) , the entry size carries at the space complexity,

where as at the time complexity values are equal to O(logn).

Graph 15: ETCD – Complexity-5

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 15 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Store

Size

Insertion

Time (µs)

Deletion

Time (µs)

Search

Time (µs)

CPU

Usage (%)

Space

Complexity

Time

Complexity

16 GB 55 62 120 29 O(n) O(log n)

24 GB 61 67 124 35 O(n) O(log n)

32 GB 66 74 133 41 O(n) O(log n)

40 GB 69 80 147 46 O(n) O(log n)

48 GB 74 85 159 53 O(n) O(log n)

64 GB 81 92 170 59 O(n) O(log n)

Table 11: ETCD Parameters – LSM Tree – 6

Delete operation removes the entry from the data store (value is key value pair), Removes a key-value

pair from etcd, Syntax is etcdctl del <key>, etcdctl del /message, API: client.Delete(ctx, key, opts). opts

provides additional options for the Get operation. And the options include WithRange: Retrieves a range

of keys, WithRevision: Retrieves the value at a specific revision, WithPrefix: Retrieves all keys with a

given prefix, WithLimit: Limits the number of returned keys, WithSort: Sorts the returned keys. Table

11 shows the all parameters from the sixth sample.

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 20

Graph 16 : ETCD Parameters : LSM Tree – 6

Graph 16 shows the LSM ETCD operations parameters like insertion time , deletion time , search time

in micro seconds.

Graph 17: ETCD – CPU Usage-6

Graph 16 and 17 shows the parameters from the sixth sample. Insertion time, deletion time, search time

shows in micro seconds where as CPU usage is in %. As usual the values are going high while

increasing the size of the data store. Space complexity is same O(n) for all the sizes of the data store.

Time complexity is O(logn) irrespective of the datastore, n represents the number of entries at the data

store.

Store Size space complexity O(n) Time Complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 12: ETCD LSM Tree Complexity-6

Table 12 carries the values for Space and Time complexity for LSM implementation of key value store

0

50

100

150

200

250

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

29

35

41

46

53

59

CPU Usage (%)

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 21

for sixth sample.

Space complexity is O(n) , so the table size carries at the space complexity, where as time complexity is

O(logn), so the logarithmic values are available.

Graph 18: ETCD – Complexity-6

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 18 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

PROPOSAL METHOD

Problem Statement

Etcd replicates the updated data across its nodes and it ensures data consistency across all the nodes. We

can say that ETCD is the main storage of the cluster. It carries the cluster state by storing the latest state

at key value store. Implementation of the ETCD using the LSM data structure is having performance

issue. We will address these issues, slowness by using another data structure.

Proposal

A Log Structured Merge Tree LSHT Tree [21][30][42] is a data structure that combines the benefits of

trees and LSMs to efficiently store and retrieve data. LSHT tree is a disk-based data structure designed

for efficient storage and retrieval of large amounts of data. It's optimized for write-heavy workloads and

provides high performance, scalability, and reliability. Log is a sequential write-only log that stores

incoming data. It is a memtable, an in-memory data structure that stores recently written data.

 Immutable memtable is A read-only version of the memtable. Disk Components is a set of disk-resident

components, including. STables (Sorted String Tables) is immutable [22][39], sorted files containing

key-value pairs. Ands bloom Filters is a Probabilistic data structures for fast lookup. Using LSM we

will implement the Data Store ETCD , and will perform all these operations like insertion of the key,

deletion of the key, search time, CPU usage [43][44]and space , time complexities.

IMPLEMENTATION

Three node , four node , five node , six node , seven node , eight node , nine node and ten node clusters

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 22

have been configured with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350

GB for all worker nodes, i.e , we have managed to have 16GB, 24GB, 32GB, 40GB, 48GB and 64GB

data store capacities (ETCD store capacities). We will test the different operations performances using

LSHT tree implementation of the key value store and compare with the previous results which we had so

far in the literature survey.

package main

import (

 "fmt"

 "math/rand"

 "sync"

 "time"

)

type LSHT struct {

 data map[int]string

 logs []string

 logSize int

 threshold int

 mu sync.Mutex

}

func NewLSHT(threshold int) *LSHT {

 return &LSHT{

 data: make(map[int]string),

 logSize: 0,

 threshold: threshold,

 }

}

// Insert adds a key-value pair and logs the operation

func (lsht *LSHT) Insert(key int, value string) {

 lsht.mu.Lock()

 defer lsht.mu.Unlock()

 // Log the operation

 logEntry := fmt.Sprintf("INSERT %d %s", key, value)

 lsht.logs = append(lsht.logs, logEntry)

 lsht.logSize++

 // Compact if threshold exceeded

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 23

 if lsht.logSize >= lsht.threshold {

 lsht.compactLogs()

 }

 lsht.data[key] = value

}

// Search retrieves a value based on a key

func (lsht *LSHT) Search(key int) (string, bool) {

 lsht.mu.Lock()

 defer lsht.mu.Unlock()

 value, found := lsht.data[key]

 return value, found

}

// Delete removes a key-value pair and logs the deletion

func (lsht *LSHT) Delete(key int) {

 lsht.mu.Lock()

 defer lsht.mu.Unlock()

 logEntry := fmt.Sprintf("DELETE %d", key)

 lsht.logs = append(lsht.logs, logEntry)

 lsht.logSize++

 if lsht.logSize >= lsht.threshold {

 lsht.compactLogs()

 }

 delete(lsht.data, key)

}

// compactLogs processes the logs and integrates changes into the main data structure

func (lsht *LSHT) compactLogs() {

 for _, log := range lsht.logs {

 fmt.Println("Compacting log:", log)

 // Additional compaction logic goes here

 }

 lsht.logs = []string{}

 lsht.logSize = 0

}

This Go implementation of a Log-Structured Hash Table (LSHT) focuses on using a simple hash table

with a logging mechanism. LSHTs are designed to store data in a log-based structure, which helps

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 24

maintain a history of operations for easy data retrieval and reduces write amplification (a common

challenge in storage systems).

The Log-Structured Hash Table (LSHT) is structured to facilitate quick writes, manage storage

efficiently, and handle data consolidation across levels when capacity is exceeded. It has a multilevel

hash table where each level holds key-value pairs. If one level exceeds its capacity, it merges or moves

data to the next level.

Entry: A struct representing an individual key-value pair. LSHT: The main LSHT structure, which holds

multiple levels (arrays of hash maps) and a capacity limit for each level. Initializes levels with a

specified number of levels. Each level is a map[int]int, simulating a hash table structure. Data Structure:

The main data structure is a map[int]string, which acts as the primary hash table where key-value pairs

are stored. We also maintain a logs slice to capture each operation (insertion or deletion).

Logging and Threshold: For each operation, a log entry is added to the logs slice. If the number of logs

exceeds a threshold (e.g., 100), we trigger a compaction process. The compaction consolidates the logs

into the main data structure and clears the log, keeping memory usage manageable.

Insert, Adds a key-value pair to the hash table and records the operation in the log.

Search: Retrieves the value for a given key, if it exists.

Delete, Removes a key-value pair from the hash table and logs the deletion.

Compaction, In a production-grade LSHT, the compaction process would apply operations in the logs to

the main data structure more thoroughly, minimizing storage costs. Here, it simply clears logs as a

demonstration.

Segments, When the memTable reaches the defined memTableMaxSize, it flushes to a new segment in

segments, simulating writing to disk.

Concurrency Handling: Read-write mutex (mu) ensures thread-safe operations in a concurrent

environment.

Basic Operations: Insert adds entries to the memTable, and Search looks up values across both the

memTable and persistent segments.

The following code shows the numerical stats collection.

package main

import (

 "fmt"

 "runtime"

 "time"

)

func main() {

 // Parameters

 threshold := 100

 numEntries := 1000

 // Create LSHT

 lsht := NewLSHT(threshold)

 // Measure Insertion Time

 start := time.Now()

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 25

 for i := 0; i < numEntries; i++ {

 lsht.Insert(i, fmt.Sprintf("Value%d", i))

 }

 insertionTime := time.Since(start).Microseconds()

 // Measure Search Time

 start = time.Now()

 for i := 0; i < numEntries; i++ {

 _, _ = lsht.Search(i)

 }

 searchTime := time.Since(start).Microseconds()

 // Measure Deletion Time

 start = time.Now()

 for i := 0; i < numEntries; i++ {

 lsht.Delete(i)

 }

 deletionTime := time.Since(start).Microseconds()

 // Measure CPU Usage and Memory

 var m runtime.MemStats

 runtime.ReadMemStats(&m)

 cpuUsage := m.Sys / 1024 / 1024

 spaceUsage := m.Alloc / 1024 / 1024

 // Display results

 fmt.Printf("Insertion Time (µs): %d\n", insertionTime/numEntries)

 fmt.Printf("Search Time (µs): %d\n", searchTime/numEntries)

 fmt.Printf("Deletion Time (µs): %d\n", deletionTime/numEntries)

 fmt.Printf("CPU Usage (MB): %d\n", cpuUsage)

 fmt.Printf("Space Usage (MB): %d\n", spaceUsage)

 fmt.Println("Expected Space Complexity: O(n)")

 fmt.Println("Expected Time Complexity - Insert: O(1), Search: O(log n)")

}

The test code collects performance metrics for the LSHT implementation, focusing on insertion time,

deletion time, search time, CPU usage, space complexity, and time complexity. Below is a description of

each metric collection.

Insertion Time: The test code measures the time taken to insert multiple entries (1000 in this case) into

the LSHT. The average insertion time per entry is calculated by dividing the total insertion time by the

number of entries.

Search Time: After inserting data, the test code retrieves each entry using the Search method and

calculates the average time taken per search operation.

Deletion Time: Similar to insertion, deletion time is measured by timing the deletion of all entries in the

LSHT, then averaging the time per deletion operation. CPU Usage: Memory usage is measured as a

rough estimate of CPU demand, which approximates memory load due to LSHT operations.

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 26

Space Usage: Go’s runtime.MemStats structure helps retrieve memory allocations specifically related to

the LSHT instance. This includes memory used by the primary data map and logs slice. Time and Space

Complexity: Space Complexity: Expected to be 𝑂(𝑛) due to the nature of the hash table storing all

entries. Time Complexity: Insertions are expected to be 𝑂(1) on average. Searches are 𝑂(log𝑛) ,

primarily due to occasional rebalancing from the compaction process.

Store Size
Insertion

Time (µs)

Deletion

Time

(µs)

Search

Time

(µs)

CPU

Usage (%)

Space

Complexity
Time Complexity

16 GB 52 58 110 26 O(n) O(log n)

24 GB 55 63 120 32 O(n) O(log n)

32 GB 61 70 130 38 O(n) O(log n)

40 GB 67 75 140 44 O(n) O(log n)

48 GB 71 81 150 50 O(n) O(log n)

64 GB 74 87 160 55 O(n) O(log n)

Table 13: ETCD Parameters – LSHT Tree -1

As shown in the Table 13, We have collected for different sizes of the ETCD data store. We have

collected the metrics for insertion time, deletion time, search time and time , space complexity. As usual

, the values are getting increased while the size of the ETCD data store is growing up. Space complexity

is O(n) and time complexity is O(logn), n represents the number of entries at the data store.

Graph 19 shows the different parameters of the LSHT implementation of the data store.

Graph 19: ETCD Parameters : LSHT Tree- 1

Graph 20: ETCD – CPU Usage-1

0

20

40

60

80

100

120

140

160

16GB 24GB 32GB 40GB 48GB 64GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

CPU Usage (%)

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 27

Graph 20 shows the CPU usage of the ETCD data store having the LSM implementation.

The insertion process typically involves adding an entry to the hash table and recording it in the log,

both of which are O(1), O(1) operations. The occasional compaction process is more expensive but

amortized over numerous insertions, keeping the average insertion time nearly constant.

Store Size space complexity O(n) Time Complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 14: ETCD LSHT Tree Complexity-1

Table 14 carries the values for Space and Time complexity for LSM implementation of key value store

for first sample. Space complexity is O(n) , so the table size carries at the space complexity, where as

time complexity is O(logn), so the logarithmic values are available.

Graph 21: ETCD – Complexity-1

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 21 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Store Size
Insertion

Time (µs)

Deletion

Time (µs)

Search

Time (µs)

CPU

Usage (%)

Space

Complexity

Time

Complexity

16 GB 53 59 112 27 O(n) O(log n)

24 GB 56 64 121 33 O(n) O(log n)

32 GB 60 68 132 39 O(n) O(log n)

40 GB 66 73 143 45 O(n) O(log n)

48 GB 70 78 152 51 O(n) O(log n)

64 GB 75 83 162 56 O(n) O(log n)

Table 15: ETCD Parameters – LSHT Tree - 2

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 28

As shown in the Table 15, We have collected for different sizes of the ETCD data store. We have

collected the metrics for Avg Insertion time, deletion time, search time and time , space complexity. As

usual , the values are getting increased while the size of the ETCD data store is growing up. Space

complexity is O(n) and time complexity is O(logn), n represents the number of entries at the data store.

Graph 22: ETCD Parameters : LSHT Tree- 2

Like insertion, deletion in LSHT involves marking or removing an entry from the hash table and

recording the operation in the log, both of which are 𝑂(1), O(1) on average. When compaction occurs, it

merges recent logs into the main data store, but this cost is amortized across multiple operations.

Graph 23: ETCD – CPU Usage-2

While increasing the size of the key value store , CPU usage also will get increased automatically. Graph

23 shows the same.

Store

Size

space complexity

O(n)

Time Complexity

O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 16: ETCD LSM Tree Complexity-2

0

20

40

60

80

100

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 29

Table 16 carries the values for Space and Time complexity for LSHT Tree implementation of key value

store for second sample.

Graph 24: ETCD – Complexity-2

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 24 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

 Store Size

Insertion

Time

(µs)

Deletion

Time (µs)

Search Time

(µs)

CPU

Usage

(%)

Space

Complexity
Time Complexity

16 GB 54 60 111 28 O(n) O(log n)

24 GB 57 62 122 34 O(n) O(log n)

32 GB 62 69 131 38 O(n) O(log n)

40 GB 68 76 142 46 O(n) O(log n)

48 GB 72 80 153 51 O(n) O(log n)

64 GB 77 85 161 57 O(n) O(log n)

Table 17 : ETCD Parameters – LSHT Tree – 3

Table 17, shows the fourth sample of the data from ETCD store. ETCD Stores a key-value pair in etcd,

Syntax: etcdctl put <key> <value>, etcdctl put message "Hello, world!"

- API: client.Put(ctx, key, value, opts) This is the put operation of ETCD. ctx represents the context for

the Get operation, It provides a way to cancel or timeout the operation. In Go, ctx is typically created

using context.Background() or context.WithTimeout(). Example: ctx := context.Background(), key

specifies the key to retrieve from etcd, Keys are strings and can be up to 4096 bytes, Keys can contain

slashes (/) to create hierarchical namespaces.

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 30

Graph 25: ETCD Parameters : LSHT Tree- 3

Compaction is the primary factor affecting LSHT’s time complexity. While each compaction run might

take 𝑂(𝑛) in the worst case, compaction is a rare event, spread out across many operations. This

infrequent trigger keeps the overall complexity of operations low.

Graph 26: ETCD – CPU Usage-3

Store Size space complexity O(n) Time Complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 18: ETCD LSM Tree Complexity-3

Table 18 carries the values for Space and Time complexity for LSHT Tree implementation of key value

store for third sample.

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 31

Graph 27: ETCD – Complexity-3

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 27 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

 Store Size
Insertion

Time (µs)

Deletion

Time (µs)

Search

Time (µs)

CPU

Usage

(%)

Space

Complexity
Time Complexity

16 GB 55 61 112 27 O(n) O(log n)

24 GB 57 66 120 32 O(n) O(log n)

32 GB 63 71 133 38 O(n) O(log n)

40 GB 67 74 143 45 O(n) O(log n)

48 GB 72 81 155 51 O(n) O(log n)

64 GB 78 85 162 55 O(n) O(log n)

Table 19: ETCD Parameters LSHT – Tree -4

Table 19 shows the ETCD LSM implementation parameters like avg Insertion time, deletion time,

search time (units are micro seconds) , and the % of CPU usage, Space and Time complexity. Space

complexity is uniform for all the sizes of the store i.e, O(n) , and the time complexity is O(logn). This is

also same irrespective of the size of the store.

ETCD GET operation retrieves a value from the store and the syntax , etcdctl get <key>, etcdctl get

/message, API: client.Get(ctx, key, opts), ctx represents the context for the Get operation, It provides a

way to cancel or timeout the operation. In Go, ctx is typically created using context.Background() or

context.WithTimeout(). Example: ctx := context.Background(), key specifies the key to retrieve from

etcd, Keys are strings and can be up to 4096 bytes, Keys can contain slashes (/) to create hierarchical

namespaces

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 32

Graph 28: ETCD Parameters : LSHT Tree- 4

Hash table lookups for a key are 𝑂(1), O(1) on average due to direct access by hashing. Even if

compaction is triggered occasionally, the search time is not affected since it always happens on the main

hash table.

Graph 29: ETCD – CPU Usage-4

Store Size space complexity O(n) Time Complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 20: ETCD LSHT Tree Complexity-4

Table 20 carries the values for Space and Time complexity for LSHT Tree implementation of key value

store for fourth sample.

0

20

40

60

80

100

120

140

160

180

16GB 24GB 32GB 40GB 48GB 64GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 33

Graph 30: ETCD – Complexity-4

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 30 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

 Store

Size

Insertion

Time (µs)

Deletion

Time (µs)

Search

Time (µs)

CPU

Usage (%)

Space

Complexity

Time

Complexity

16 GB 54 60 110 26 O(n) O(log n)

24 GB 58 64 121 31 O(n) O(log n)

32 GB 64 72 129 39 O(n) O(log n)

40 GB 69 77 140 44 O(n) O(log n)

48 GB 73 82 151 50 O(n) O(log n)

64 GB 78 88 161 56 O(n) O(log n)

Table 21: ETCD Parameters – LSHT Tree - 5

Delete operation removes the entry from the data store (value is key value pair), Removes a key-value

pair from etcd, Syntax is etcdctl del <key>, etcdctl del /message, API: client.Delete(ctx, key, opts). opts

provides additional options for the Get operation. And the options include WithRange: Retrieves a range

of keys, WithRevision: Retrieves the value at a specific revision, WithPrefix: Retrieves all keys with a

given prefix, WithLimit: Limits the number of returned keys, WithSort: Sorts the returned keys. Table

21 shows the all parameters from the fifth sample.

Graph 31: ETCD Parameters : LSHT Tree- 5

16

24

32

40

48

64

4
4.58

5
5.32

5.58
6

0

2

4

6

8

0

20

40

60

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

0

50

100

150

200

16GB 24GB 32GB 40GB 48GB 64GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 34

Graph 32: ETCD – CPU Usage-5

Store Size space complexity O(n) Time Complexity O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 22: ETCD LSHT Tree Complexity-5

Table 22 carries the values for Space and Time complexity for LSHT Tree implementation of key value

store of the fifth sample.

Graph 33: ETCD – Complexity-5

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 33 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

CPU Usage (%)

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 35

Store Size
Insertion

Time (µs)

Deletion

Time (µs)

Search

Time (µs)

CPU

Usage

(%)

Space

Complexity
Time Complexity

16 GB 52 60 114 27 O(n) O(log n)

24 GB 58 65 121 32 O(n) O(log n)

32 GB 63 72 130 38 O(n) O(log n)

40 GB 68 75 142 45 O(n) O(log n)

48 GB 72 79 154 51 O(n) O(log n)

64 GB 76 84 164 55 O(n) O(log n)

Table 23: ETCD Parameters LSHT Tree -6

Table 23 carries the values for LSHT implementation of ETCD parameters like insertion time, deletion

time, search time.

Graph 34: ETCD Parameters : LSHT Tree- 6

Graph 34 shows the LSHT implementation parameters for ETCD like insertion time, deletion time and

search time , all are in micro seconds.

Graph 35: ETCD – CPU Usage-6

Graph 35 shows the cpu usage of ETCD having LSHT implementation. We have tested the performance

by using the performance test code which we have mentioned in the previous section.

0

20

40

60

80

100

120

140

160

180

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

Insertion Time (µs) Deletion Time (µs) Search Time (µs)

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

Avg CPU Usage (%)

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 36

Store

Size

space complexity

O(n)

Time Complexity

O(logn)

16GB 16 4

24GB 24 4.58

32GB 32 5

40GB 40 5.32

48GB 48 5.58

64GB 64 6

Table 24: ETCD LSM Tree Complexity-6

Table 24 carries the values for Space and Time complexity for LSHT Tree implementation of key value

store of the sixth sample.

Graph 36: ETCD – Complexity-6

Please find the Logarithmic graph using the calculation, O(1) = 1, O(log n) ≈ 4 (using base 2 logarithm),

O(n) = 16, 24, 32, 40, 48 and 64 for the n values from the size of the store which we have mentioned in

the table. Graph 36 shows the same values. It is using two scale Y-Axis since the table is carrying two

ranges of values. Left Y axis is having the range from 0 to 70 , where as right Y axis is having the range

from 0 to 7.

Graph 37: ETCD LSM Vs LSHT Tree-1.1

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

space complexity O(n) Time complexity O(logn)

Log. (space complexity O(n)) Log. (space complexity O(n))

16GB

24GB

32GB

40GB

48GB

64GB

0

50

100

150

200

16GB 24GB 32GB 40GB 48GB 64GB

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 37

Graph 37, shows the Insertion time difference between LSM and LSHT Tree implementation. As per the

graph the time trend is going down as move from LSM to LSHT Tree implementation. The same

observation we can have with other parameters like deletion time and search time.

Graph 38: ETCD LSM Vs LSHT Tree-1.2

Graph 38 shows the CPU usage difference between LSM implementation and LSHT Tree

implementation. CPU usage is going low once we are dealing with LSHT in the implementation.

Graph 39: ETCD LSM Vs LSHT Tree-2.1

Graph 39, is the comparison between LSM and LSHT Tree implementation of the key value store

(ETCD). The graph shows the Insertion time difference between LSM and LSHT Tree implementation.

As per the graph the time trend is going down as move from LSM to LSHT Tree implementation. The

same observation we can have with other parameters like deletion time and search time.

Graph 40: ETCD LSM Vs LSHT Tree-2.2

0

10

20

30

40

50

60

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

LSM-CPU (%) LSHT-CPU (%)

0

20

40

60

80

100

120

140

160

180

LSM-Ins LSHT-Ins LSM-Del LSHT-Del LSM-Sea LSHT-Sea

16GB 24GB 32GB 40GB 48GB 64GB

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

LSM-CPU Usage LSHT-CPU Usage

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 38

Graph 40 shows the CPU usage difference between LSM implementation and LSM Tree

implementation. The CPU usage also going down once we started using the LSM implementation of the

ETCD store.

Graph 41: ETCD LSM Vs LSHT Tree-3.1

Graph 41, is the comparison between LSM and LSHT Tree implementation of the key value store

(ETCD) for the third sample. The graph shows the Insertion time difference between LSM and LSHT

Tree implementation. As per the graph the time trend is going down as move from LSM to LSHT Tree

implementation. The same observation we can have with other parameters like deletion time and search

time.

Graph 42: ETCD LSM Vs LSHT Tree-3.2

Graph 42 shows that the CPU utilization is going down form high to low when we are moving from

LMS implementation to LSHT implementation of Key value store.

0

20

40

60

80

100

120

140

160

180

200

LMS-Ins LSHT-Ins LMS-Del LSHT-Del LMS-Sea LSHT-Sea

16GB 24GB 32GB 40GB 48GB 64GB

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

LMS-CPU Usage LSHT-CPU Usage

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 39

Graph 43: ETCD LSM Vs LSHT Tree-4.1

Graph 43, is the comparison between LSM and LSHT Tree implementation of the key value store

(ETCD) for the fourth sample. The graph shows the Insertion time difference between LSM and LSHT

Tree implementation. As per the graph the time trend is going down as move from LSM to LSHT Tree

implementation. The same observation we can have with other parameters like deletion time and search

time.

Graph 44: ETCD LSM Vs LSHT Tree-4.2

Graph 44 shows the CPU usage difference between LSM implementation and LSHT Tree

implementation. The CPU usage is going down once we start using the LSHT implementation of the key

value store.

Graph 45: ETCD LSM Vs LSHT Tree-5.1

0

20

40

60

80

100

120

140

160

180

LMS- Ins LSHT-Ins LMS-Del LSHT-Del LMS-Sea LSHT-Sea

16GB 24GB 32GB 40GB 48GB 64GB

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

LSM-CPU LSHT- CPU

0

20

40

60

80

100

120

140

160

180

LMS-Ins LSHT-Ins LMS-Del LSHT-Del LMS-Sea LSHT-Sea

16GB 24GB 32GB 40GB 48GB 64GB

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 40

Graph 45, is the comparison between LSM and LSM Tree implementation of the key value store

(ETCD) for the third fifth. The graph shows the Insertion time difference between LSM and LSHT Tree

implementation. As per the graph the time trend is going down as move from LSM to LSHT Tree

implementation. The same observation we can have with other parameters like deletion time and search

time.

Graph 46: ETCD LSM Vs LSHT Tree-5.2

Graph 46 shows the CPU usage difference between LSM implementation and LSM Tree

implementation. LSHT implementation is using less cpu compared to LSM implementation. So this

analysis is positive to proceed further with LSM implementation of key value store (ETCD).

Graph 47: ETCD LSM Vs LSHT Tree-6.1

Graph 47, is the comparison between LSM and LSHT Tree implementation of the key value store

(ETCD) for the sixth sample. The graph shows the Insertion time difference between LSM and LSHT

Tree implementation. As per the graph the time trend is going down as move from LSM to LSHT Tree

implementation. The same observation we can have with other parameters like deletion time and search

time.

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

LMS-CPU LSHT-CPU

0

20

40

60

80

100

120

140

160

180

LMS-Ins LSHT-Ins LMS-Del LSHT-Del LMS-Sea LSHT-Sea

16GB 24GB 32GB 40GB 48GB 64GB

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 41

Graph 48: ETCD LSM Vs LSHT Tree-6.2

Graph 48 shows the CPU usage difference between LSM implementation and LSHT Tree

implementation. ETCD is consuming less CPU once we have LSHT implementation of the same. LSM

implementation is consuming bit high compared to LSHT implementation.

Graph 49: ETCD LSM Vs LSHT Tree- Space Complexities

Graph 49 shows the space complexities comparison for the LSM and LSHT implementation of the key

value store.

Graph 50: ETCD LSM Vs LSHT Tree- Time Complexities

Graph 50 shows the comparison of time ccomplexities between LSM and LSHT implementation of the

ETCD.

0

10

20

30

40

50

60

16GB 24GB 32GB 40GB 48GB 64GB

LMS-CPU LSHT-CPU

16

24

32

40

48

64

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16 GB 24 GB 32 GB 40 GB 48 GB 64 GB

LSM-Space Complexity LSHT-Space Complexity

LSM-Time Complexity LSHT-Time Complexity

Log. (LSHT-Space Complexity) Log. (LSHT-Time Complexity)

4

4.58

5

5.32

5.58

6

4

4.58

5

5.32

5.58

6

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

16GB 24GB 32GB 40GB 48GB 64GB

Time complexity O(logn) Time complexity O(logn)2

Log. (Time complexity O(logn)) Log. (Time complexity O(logn)2)

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 42

Graph 51: ETCD LSM Vs LSHT Time and Space complexities

Graph 49 , 50 and 51 shows the comparison of complexities between LSM and LSHT Tree

implementation. We can conclude that by using the LSHT implementation of the ETCD is better than

using the LSM implementation. In summary, the time complexity of LSHT is generally 𝑂(1) for

insertion, deletion, and search operations on average, with occasional 𝑂(𝑛) overheads for compaction,

amortized over time. This makes LSHT highly efficient for applications requiring fast sequential writes

and moderate lookup performance.

EVALUATION

The comparison of LSM implementation results with LSHT Tree implementation shows that later one

exihibits high performance. We have collected the stats for different sizes of the Data Store size. The

Data Sore capacities are 16GB, 24GB, 32GB , 40GB , 42GB and 64GB. For all these events the

comparison of the same parameters have been observed. As per the analysis carried out so far in this

states that insertion time , deletion time, and search time are going down if u start using the

implementation of the Data Store (ETCD) using the LSHT instead of LSM.

CONCLUSION

We have configured three node , four node , five node , six node , seven node , eight node , nine node

and ten node clusters with 32 CPU, 64 GB and 500GB for master node and 24 CPU , 32 GB and 350

GB for all worker nodes and tested the performance of ETCD operations using the metrics collection

code. We have collected six samples on etcd operations like insertion , deletion , search . All these

activities are performing better in the LSHT implementation compared to LSM implementation. Space

complexity and time complexity are also compared, along with this CPU usage . Complexities are

almost same , while CPU usage values are going down.

Please use LSM implementation of ETCD when ever there is range queries are frequent, high-write

workloads are expected, large datasets are involved, disk-based storage is used.

Please use the LSHT implementation when ever we need High-performance is required, Low-latency is

critical, Small to medium datasets are involved, In-memory storage is used.

By having the analysis which we had through out the paper , we can conclude that insertion time,

deletion time, search time , cpu usage are getting decreased automatically while complexities remains

the same.

16

24

32

40

48

64

4

4.58
5

5.32
5.58

6

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

16GB 24GB 32GB 40GB 48GB 64GB

A-space O(n) L-space(n) A-Time O(logn)

L-TimeO(logn) Log. (L-space(n)) Log. (L-TimeO(logn))

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 43

Future work : LSHTs typically use hash-based indexing, which doesn’t support range queries well. This

can make it inefficient for applications needing sequential access patterns or data ordered by keys.

LSHTs require multiple levels of compaction, which increases the number of read operations necessary

to retrieve a single entry. LSHTs require a large amount of memory for maintaining metadata structures,

particularly for tracking the locations of data blocks and handling deletions or updates.

Continuous compaction is essential to prevent data from becoming fragmented, but this is

computationally expensive and can affect overall throughput, especially during peak usage times.

Addressing all these issues involved in future work.

REFERENCES

1. A Comprehensive Study of “etcd”—An Open-Source Distributed Key-Value Store with Relevant

Distributed Databases, April 2022,Emerging Technologies for Computing, Communication and

Smart Cities (pp.481-489),Husen Saifibhai Nalawala, Jaymin Shah, Smita Agrawal, Parita Oza.

2. Impact of etcd deployment on Kubernetes, Istio, and application performance,William Tärneberg,

Cristian Klein, Erik Elmroth, Maria Kihl, 07 August 2020.

3. Kuberenets in action by Marko Liksa , 2018.

4. Kubernetes Patterns, Ibryam , Hub

5. Kubernetes and Docker - An Enterprise Guide: Effectively containerize applications, integrate

enterprise systems, and scale applications in your enterprise by Scott Surovich and Marc Boorshtein,

2020.

6. Kubernetes Best Practices , Burns, Villaibha, Strebel , Evenson.

7. Learning Core DNS, Belamanic, Liu.

8. Core Kubernetes , Jay Vyas , Chris Love.

9. A Formal Model of the Kubernetes Container Framework. GianlucaTurin, AndreaBorgarelli,

SimoneDonetti, EinarBrochJohnsen, S.LizethTapiaTarifa, FerruccioDamiani

Researchreport496,June202

10. Kubernetes Container Orchestration as a Framework for Flexible and Effective Scientific Data

Analysis, IEEE Xplore, 13 February 2020.

11. On the Performance of etcd in Containerized Environments" by Luca Zanetti et al. (2020), IEEE

International Conference on Cloud Computing (CLOUD).

12. Research and Implementation of Scheduling Strategy in Kubernetes for Computer Science

Laboratory in Universities, by Zhe Wang 1,Hao Liu ,Laipeng Han ,Lan Huang and Kangping Wang.

13. Study on the Kubernetes cluster mocel, Sourabh Vials Pilande. International Journal of Science and

Research , ISSN : 2319-7064.

14. Network Policies in Kubernetes: Performance Evaluation and Security Analysis, Gerald Budigiri;

Christoph Baumann; Jan Tobias Mühlberg; Eddy Truyen; Wouter Joosen, IEEE Xplore 28 July

2021.

15. Networking Analysis and Performance Comparison of Kubernetes CNI Plugins, 28 October 2020, pp

99–109, Ritik Kumar & Munesh Chandra Trivedi.

16. Assessing Container Network Interface Plugins: Functionality, Performance, and Scalability,

Shixiong Qi; Sameer G. Kulkarni; K. K. Ramakrishnan, 25 December 2020 , IEEEXplore.

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 44

17. Kubernetes and Docker Load Balancing: State-of-the-Art Techniques and Challenges, International

Journal of Innovative Research in Engineering & Management, Indrani Vasireddy, G. Ramya,

Prathima Kandi

18. Research on Kubernetes' Resource Scheduling Scheme, Zhang Wei-guo, Ma Xi-lin, Zhang Jin-

zhong.

19. Deploying Microservice Based Applications with Kubernetes: Experiments and Lessons Learned,

Leila Abdollahi Vayghan Montreal, Mohamed Aymen Saied; Maria Toeroe; Ferhat Khendek, IEEE

XPlore.

20. Improving Application availability with Pod Readiness Gates https://orielly.ly/h_WiG

21. Kubernetes Best Practices: Resource Requests and limits https://orielly.ly/8bKD5

22. Configure Default Memory Requests and Limits for a Namespace https://orielly.ly/ozlUi1

23. Kubernetes CSI Driver for mounting images https://orielly.ly/OMqRo

24. Modelling performance & resource management in kubernetes by Víctor Medel, Omer F. Rana, José

Ángel Bañares, Unai Arronategui.

25. "etcd: A Distributed, Reliable Key-Value Store for the Edge" by Corey Olsen et al. (2018)

26. "An Empirical Study of etcd's Performance and Scalability" by Zhen Xiao et al. (2019) 2019 IEEE

39th International Conference on Distributed Computing Systems (ICDCS).

27. Distributed Kubernetes Metrics Aggregation, 23 September 2022, pp 695–703, Mrinal Kothari, Parth

Rastogi, Utkarsh Srivastava, Akanksha Kochhar & Moolchand Sharma, Springer.

28. An Analysis on the Performance of Tree and Trie based Dictionary Implementations with Different

Data Usage Models, M. Thenmozhi1 and H. Srimathi, Indian Journal of Science and Technology,

Vol 8(4), 364–375, February 2015.

29. Kubernetes IP-tables Performance using Trie Tree and Radix Tree Implementation, Renukadevi

Chuppala, Dr. B. PurnachandraRao.

30. A Portable Load Balancer for Kubernetes Cluster, 28 January 2018, Kimitoshi Takahashi, Kento

Aida, Tomoya Tanjo, Jingtao SunAuthors Info & Claims.

31. "etcd: A Highly-Available, Distributed Key-Value Store" by Brandon Philips et al. (2014),

Proceedings of the 2014 ACM SIGOPS Symposium on Cloud Computing.

32. Predicting resource consumption of Kubernetes container systems using resource models, Gianluca

Turin , Andrea Borgarelli , Simone Donetti , Ferruccio Damiani , Einar Broch Johnsen , S. Lizeth

Tapia Tarifa.

33. Performance Evaluation of etcd in Distributed Systems" by Jiahao Chen et al. (2020), 2020 IEEE

International Conference on Cloud Computing (CLOUD).

34. Rearchitecting Kubernetes for the Edge, Andrew Jeffery, Heidi Howard, Richard MortierAuthors

Info & Claims, 26 April 2021.

35. A Two-Tier Storage Interface for Low-Latency Kubernetes Deployments, Ionita, Teodor Alexandru,

2022-05-11.

36. Scalable Data Plane Caching for Kubernetes, Stefanos Sagkriotis; Dimitrios Pezaros, 2022, IEEE

Xplore.

37. High Availability Storage Server with Kubernetes, Ali Akbar Khatami; Yudha Purwanto;

Muhammad Faris Ruriawan, 2020, IEEE Xplore.

Advanced International Journal of Multidisciplinary Research

E-ISSN: 2584-0487 editor@aijmr.com

Volume 2, Issue 5, September-October 2024

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1110

AIJMR24051110 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 45

38. Management of Life Cycle of Computing Agents with Non-deterministic Lifetime in a Kubernetes

Cluster, Mykola Alieksieiev; Volodymyr Smahliuk, 2023 , IEEE Xplore.

39. SECURITY IN THE KUBERNETES PLATFORM: SECURITY CONSIDERATIONS AND

ANALYSIS, Ghadir Darwesh, Jafar Hammoud, Alisa Andreevna VOROBYOVA, 2022.

40. Security Challenges and Solutions in Kubernetes Container Orchestration, Oluebube Princess

Egbuna, 2022.

41. The Implementation of a Cloud-Edge Computing Architecture Using OpenStack and Kubernetes for

Air Quality Monitoring Application, Endah Kristiani, Chao-Tung Yang, Chin-Yin Huang, Yuan-

Ting Wang & Po-Cheng Ko , 16 July 2020.

42. LSM and Red Black tree as a single balanced tree, March 2016, Zegour Djamel Eddine, Lynda

Bounif

43. The log-structured merge-tree (LSM-tree),June 1996, Patrick O’Neil, Edward Cheng, Dieter

Gawlick & Elizabeth O’Neil.

44. Kubernetes IP Hash Set For Managing Addresses in IP-Tables, Renukadevi Chuppala, Dr. B.

PurnachandraRao.

https://www.researchgate.net/profile/Zegour-Djamel-Eddine?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Lynda-Bounif?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Lynda-Bounif?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19

