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Abstract 

Precision medicine-based approaches differentiate themselves by taking into consideration 

subpopulation variability (e.g. genetic variations, age, gender, race, addictions). To date, traditional 

models, such as Trial-and-Error Dosing, Empirical Treatment Guidelines, Statistical and Actuarial 

Models, Pathophysiological Models, and Clinical Judgment and Experience, have been generalized in 

healthcare fields. However, more comprehensive and innovative technologies are required besides these 

conventional modelings, which are subject to various limitations such as low efficiency and incapability 

of processing complex biological systems. Here we review diverse machine learning (ML) algorithms 

integrated with big data and omics and its applications in various aspects of precision medicine. ML is 

the branch of artificial intelligence (AI), which has been rapidly developed and  highlighted as a 

promising method to decrease diagnostic errors and aid clinicians with decision-making in recent 

decades. We focused on applications of ML models such as support vector machine (SVM), K Nearest 

Neighbor (KNN) random forest (RF), convolutional neural networks (CNNs) and deep learning in drug 

toxicity prediction, cardiovascular diseases, neurodegenerative diseases, and cancer therapies within 

precision medicine and specific benefits and challenges of each. This review provides insights on the 

wider utilization in clinical environments by recognizing current advantages that are expected to expand 

the scope of AI-driven methods and issues that need to be addressed for further studies. 
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1.  Introduction 

The concept of enhancing healthcare fields by tailoring treatment to individuals depending on their 

specific characteristics is centuries old and remains a key component of medical practice. Awareness 

that patient heterogeneity was significant in treatment assessments began to emerge in the late twentieth 

century among both clinicians [1] and biostatisticians [2]. This patient heterogeneity implied the need of 

individualized therapy based on evidence-based medicine stated by Kraviz et al. [3]. These component 

ideas were combined and yielded the modern concept of precision medicine paradigm in which patient 

heterogeneity is leveraged via data-driven approaches in order to improve treatment decision-making so 

that the certain therapy is prescribed to the certain patient at the right time. Precision medicine became 

considered significant with President Obama’s announcement of the Precision Medicine Initiative in this 

2015 State of the Union Address [4].  

In terms of extracting ‘precise’, as the name suggests, population-level data related to particular factors 

to the risk of disease, computational methods such as artificial intelligence (AI) and machine learning 

have stood out in the past decades. By the late 1700s the statistical measures had impacted, but actual 

advances started to dramatically increase after the first arbitrarily controlled clinical trial was 

successfully performed by Austin Bradford Hill in 1946 [5]. By the 1960s, statistical measures had been 

developed that enabled claims that specific biomarkers, behaviors, and other individual patient data 

could make the development of heart disease [6]. In the 1950s, McCarthy et al. [7] proposed AI as a 

prediction machine and Samuel [8] developed machine learning in 1959, leading to the investigation of 

discrimination of cells in microscopic images with machine learning at that time. Dechter [9] 

subsequently proposed deep learning in 1986 and Lecun et al. [10] proposed a convolutional neural 

network in 1988. 

Moreover, AI-based applications for follow-up of treatment progress are also being actively developed 

and 13 applications were approved by the FDA from 2017 to 2020 [11]. The paradigm of medicine has 

been shifted from generalized solutions for the largest number of patients toward prevention, 

personalization, and precision with the development of AI technologies [12]. According to a recent 

National Academy of Medicine report about current and future state of AI in healthcare, they noted 

“unprecedented opportunities” as to augmentation of the specialists care and the AI-provided  assistance 

in tackling the realities of being human (e.g. fatigue and inattention) and the risks of machine error [13]. 

With these verified potential of AI-based technologies, we delved deeply into the applications of AI in 

precision medicine including drug toxicity medicine, cardiovascular diseases, neurodegenerative 

diseases, and cancer therapies. Moreover, this review includes several challenges that we’re currently 

encountering.  

Precision medicine uses tools such as omics, pharmaco-omics, Big Data, Artificial Intelligence (AI), and 

machine learning (ML) to determine the best course of action when developing cures for patients [14]. 

Therefore, it has shown itself to be greatly relied upon in the evolution of healthcare, especially in 

clinical settings. One reason for its success is the use of computational methods. ML helps to recognize 

patterns in complicated datasets, allowing for a more effective organization of data. It does this by using 

a punishment and reward system in supervised models which instructs the AI to repeat good behaviors. 

This helps in drug toxicity prediction, an area in which ML shines [15]. Due to its thoroughness, ML 

combats challenges that might arise from precision medicine, such as large amounts of data, by carefully 

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(05)64988-4/abstract
https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1097-0258(19990915/30)18:17/18%3C2311::AID-SIM257%3E3.0.CO;2-T
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0887-378X.2004.00327.x
https://obamawhitehouse.archives.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-initiative
https://www.google.com/books/edition/MEDICAL_AND_HEALTH_SCIENCES_Volume_VIII/t9bCDAAAQBAJ?hl=en&gbpv=1&pg=PA53&printsec=frontcover
https://hdsr.mitpress.mit.edu/pub/y7r65r4k/release/4
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/1904
https://ieeexplore.ieee.org/abstract/document/5389202
https://aaai.org/papers/00178-aaai86-029-learning-while-searching-in-constraint-satisfaction-problems/
https://ieeexplore.ieee.org/document/6795724
https://medicalfuturist.com/fda-approved-ai-based-algorithms/
https://www.tandfonline.com/doi/full/10.1080/23808993.2017.1380516
https://ascpt.onlinelibrary.wiley.com/doi/full/10.1111/cts.12884
https://www.sciencedirect.com/science/article/abs/pii/S0377123721001672?via%3Dihub
https://www.researchgate.net/profile/Li-Zhang-263/publication/326657632_Applications_of_Machine_Learning_Methods_in_Drug_Toxicity_Prediction/links/5bdbc9e8299bf1124fb42887/Applications-of-Machine-Learning-Methods-in-Drug-Toxicity-Prediction.pdf
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sorting through information and categorizing it. Like ML, computational modeling techniques also use 

number based data to enhance precision medicine [16]. They excel at grouping patients into similar sub-

populations and finding data similarities between the individuals in the groups. Similarly, they help aid 

clinicians in determining treatments, making precision medicine safer for implementation into clinical 

settings. To retain credibility, another challenge brought up by the implementation of computational 

techniques, they follow a ten step checklist. Although precision medicine is a modern and valuable 

approach to medicine, it still faces challenges when implementing computational techniques into clinical 

practice methods. In this review, we show utilization of data-driven approaches (such as ML, deep 

learning algorithms, etc.) in various scopes of precision medicine (drug discovery, cardiovascular 

diseases, molecular biology diseases, etc.) to investigate the challenges of introducing computational 

techniques to clinical practice and possible solutions. 

 

2.  Discussion 

A. Need for Modeling in Healthcare 

Computational modeling has enhanced healthcare. It utilizes mathematical simulations and algorithms to 

advance precision medicine and clinical decision making, and it has had a notable impact on modern 

medical practices, specifically because it allows for increased personalization and complexity handling. 

Traditional approaches for analyzing healthcare have many limitations, increasing inefficiency, and 

risks. However, the use of modeling to counter these limitations provides many benefits such as those 

listed below [16]. 

Personalized Medicine and Patient Stratification 

Personalized medicine and patient grouping leverage analysis of complex and heterogeneous patient 

data. Identifying subgroups with similar characteristics and allowing targeted treatments and strategies 

[17]. This can optimize resource allocation; additionally, it can improve patient outcomes through 

organization.  

Clinical Decision Support and Treatment Optimization 

Incorporating patient data such as genetic profiles or medical history provides clinical decision support. 

This approach offers personalized treatment recommendations for healthcare professionals and 

physicians to utilize [18]. 

Understanding Biological Concepts 

Computational models can display the usage of data sources (such as genomics, proteomics, etc.) to 

provide scientific knowledge [17]. As a result, this can help create targeted treatments to advance 

precision medicine and healthcare abilities. 

Drug Development and Safety Evaluation 

The drug development process does involve predicting drug side effects and optimizing drug design. By 

simulating interactions between drugs and biological systems, safety concerns can be identified to 

increase safety and effectiveness for the therapeutic agents; this reduces the risk of adverse events, 

benefiting patients [18]. 

Resource Optimization and Healthcare Efficiency 

Simulations and analysis of complex data (purposes of computational modeling) can improve resource 

allocation [19]. Overall results can include efficient utilization of resources, reduced costs, improved 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526418/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7526418/
https://www.sciencedirect.com/science/article/abs/pii/S0956566316312647?via%3Dihub
https://onlinelibrary.wiley.com/doi/10.1002/smll.202200201
https://www.sciencedirect.com/science/article/abs/pii/S0956566316312647?via%3Dihub
https://onlinelibrary.wiley.com/doi/10.1002/smll.202200201
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/reporting-computational-modeling-studies-medical-device-submissions
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patient flow, and better quality and accessibility of healthcare services. 

B. Data-driven predictions using machine learning techniques 

Machine learning is a computer science paradigm which improves the ability to identify complex 

patterns in large datasets. It has been further classed as supervised, unsupervised, or reinforcement 

models. Supervised machine learning algorithms utilize labeled data to identify patterns in 

multidimensional data, such as identifying healthy and diseased people or predicting result scores. 

Punishments and rewards instruct reinforcement models to repeat good decisions (reward them) and 

avoid making bad decisions (punish them) in the future. A training data set with known labels is used to 

create a model and optimize its performance for the desired result [20]. Patterns discovered in the data 

can be used to classify new data sets or create individualized predictions. Models used for classification 

can group data into classes, while regression models can generally predict continuous outcomes [21].  

The first key stage in drug discovery is to identify significant compounds. We now have access to a 

variety of biomedical databases to assist us in accomplishing this goal. In this context, target 

identification uses gene expression to better understand disease mechanisms and identify genes that 

contribute to the disease. The use of microarray and RNA-seq technologies has resulted in large amounts 

of data on gene expression in a variety of disorders [22]. Through the analysis of gene expression 

signatures, it is possible to identify the target genes associated with different disorders. For instance, van 

IJzendoorn et al. (2019) employed a machine learning approach and gene expression data to discover 

new biomarkers and potential drug targets for rare soft tissue sarcoma. In recent times, numerous 

computer programming and software have been developed to utilize different algorithms for interpreting 

results using predefined scoring functions. However, this remains a challenging task because energy 

levels and force fields for screening potential therapeutic compounds are extremely difficult to predict 

with certainty. Quantum physics has the potential to significantly improve efficiency in predicting future 

medication discoveries and reducing errors [15]. 

Due to the paradigm shift in genomics, new machine learning algorithms are applied to precision 

medicine in some areas. The K Nearest Neighbor algorithm is famous for its simplicity, widespread use, 

and high efficiency for pattern recognition. It merely classifies samples based on the category of their 

nearest neighbor. This classifier is straightforward, but it can be affected by redundant and irrelevant 

attributes when dealing with large volumes of medical data. Due to the elastic network's nature, oriented 

feature selection linear SVM can provide automatic feature selection, and the fused lasso ensures the 

smoothness of the coefficient vector. Compared to the approach of classifiers, where feature selection is 

an independent step, this is time-saving but brings about its own problems. Although features are 

selected, they may not provide the reliability of forward- and backward-stepwise selection [15]. Support 

vector machines (SVMs) are well-known machine learning algorithms for classification and regression 

applications. In healthcare, they have been used for a variety of tasks, including diagnosis, prognosis, 

and prediction of disease outcomes. SVMs are adept at addressing complex medical data due to their 

ability to analyze and address nonlinear relationships between features and classes. The ability to 

identify an optimal decision boundary representing the largest separation between classes is the key 

strength of an SVM. The creation of the optimal hyperplane is influenced by a small subset of training 

samples, which are the pivotal data structure in an SVM. The optimal hyperplane is not affected by the 

removal of the training samples that are not relevant to the SVs. Initially, SVMs were used to tackle 

https://www.sciencedirect.com/science/article/abs/pii/S1359644618300916
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8040371/#CR43
https://doi.org/10.1002/adhm.202202362
https://www.researchgate.net/profile/Li-Zhang-263/publication/326657632_Applications_of_Machine_Learning_Methods_in_Drug_Toxicity_Prediction/links/5bdbc9e8299bf1124fb42887/Applications-of-Machine-Learning-Methods-in-Drug-Toxicity-Prediction.pdf
https://www.researchgate.net/profile/Li-Zhang-263/publication/326657632_Applications_of_Machine_Learning_Methods_in_Drug_Toxicity_Prediction/links/5bdbc9e8299bf1124fb42887/Applications-of-Machine-Learning-Methods-in-Drug-Toxicity-Prediction.pdf
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linearly separable problems, with their capabilities later extended to handle nonlinear ones. Samples are 

mapped from a finite-dimensional space to a higher-dimensional space [23]. Random forests are models 

that are used for both classification and regression tasks. In a random forest a collection of decision trees 

are created, each trained in a different subset with some randomness utilized during the building process. 

Random Forests are part of the family of ensemble learning methods where multiple models are 

combined to improve accuracy and reduce overfitting [24]. 

C. Applications in Precision Medicine 

Machine learning methods in drug toxicity prediction 

Machine learning and deep learning algorithms have emerged as a method for predicting aspects of drug 

toxicity. These methods offer insights into the risks linked to pharmaceutical drugs, such, as 

carcinogenicity, acute oral toxicity and long term toxicity  forecasts [15]. Toxicity is classified into two 

categories; acute and chronic. Examples of chronic toxicity include mutagenicity, carcinogenicity, and 

acute oral toxicity. Lethal Concentration 50, or LC50, is utilized in environmental studies, while Lethal 

Dose 50, or LD50, is frequently employed in research to assess toxicity. Because it can reduce the costs 

and personnel required for pharmaceutical clinical trials, toxicity prediction is crucial. Predicting toxicity 

accurately can help avoid a great deal of pharmacological evaluations, such as animal, cell, and clinical 

studies. The subject of toxicity prediction can benefit considerably from the incorporation of machine 

learning in the era of Big Data and artificial intelligence. In the context of Big Data and artificial 

intelligence, machine learning has great potential to assist with toxicity prediction since it can improve 

prediction accuracy by combining chemical structure descriptions with research of human transcriptome 

data. When paired with transcriptome data analysis, machine learning techniques such as support vector 

machines, random forests, deep learning, and k-nearest neighbors have demonstrated exceptional 

performance in toxicity prediction, improving the accuracy of toxicity prediction models. By using 

machine learning methods, abstract chemical fragments can be created and then used to create high-

performance toxicity prediction models that are based on large amounts of data [25].  

 
Figure 1. Drug Toxicity Prediction Algorithms 

https://www.mdpi.com/2078-2489/15/4/235#:~:text=Support%20vector%20machines%20(SVMs)%20are,and%20prediction%20of%20disease%20outcomes.
https://www.editage.com/blog/random-forests-for-big-biomedical-data/#:~:text=Random%20Forests%20have%20found%20extensive,%2C%20clinical%2C%20or%20omics%20data.
https://www.researchgate.net/profile/Li-Zhang-263/publication/326657632_Applications_of_Machine_Learning_Methods_in_Drug_Toxicity_Prediction/links/5bdbc9e8299bf1124fb42887/Applications-of-Machine-Learning-Methods-in-Drug-Toxicity-Prediction.pdf-
https://www.mdpi.com/1422-0067/19/8/2358
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To classify drug compounds as toxic or non-toxic, numerous modern drug toxicity prediction algorithms 

are used, each with its own set of strengths and methodologies. These algorithms combine to make drug 

toxicity assessments clearer and more understandable, each adding a layer of resilience and precision to 

the prediction models used in pharmacological research. Carcinogenicity is important in the 

development of drugs because of the serious health implications that can come from exposure to 

carcinogens. To be able to predict the carcinogenic potential of drugs, these models are trained by 

machine learning algorithms using information from animal studies and molecular descriptors. 

Therefore, such models enable early identification of chemicals that include cancer causing substances, 

which helps improve the decision-making process on medication development and reduce possible 

negative consequences on health. Mutagenicity is linked to increased risk of cancer and other genetic 

disorders as it is caused by substances that have the ability to change genetic material. This is why 

mutagenic power prediction models usually rely on data derived from tests like Ames test that examines 

mutagenic powers of compounds using bacterial strains. Whether a substance is mutagenic can be 

determined through machine learning methods that use molecular descriptors and empirical data. These 

models are helpful in using safer drug design and development processes by evaluating a large number 

of chemicals for mutagenicity. Hepatotoxicity, often known as drug-induced liver injury, or DILI, is a 

major issue in clinical practice and pharmaceutical research. Liver function tests reveal that harmful 

compounds can cause anything from mild liver problems to severe liver failure. Machine learning 

techniques are used to predict hepatotoxicity by analyzing chemical structures and other molecular 

parameters. These prediction techniques reduce the possibility of liver-related side effects by accurately 

identifying substances that potentially cause liver toxicity and helping to prioritize treatment 

alternatives. Determining safe dosages and possible health risks from exposure depends on evaluating 

the acute oral toxicity of substances. Pharmacological toxicity during oral administration is predicted by 

machine learning techniques utilizing molecular descriptors and data from animal research. These 

models are essential for ensuring patient safety, directing dose selection, and identifying high-toxicity 

compounds early in the pharmaceutical development process. Since hERG (Human Ether-a-go-go-

Related Gene) is linked to QT prolongation, a potentially fatal heart rhythm problem, blocking it 

throughout the pharmaceutical development process is challenging. It is important to be able to predict 

hERG inhibition, which is needed to ascertain the presence of possible drug-induced cardiovascular 

abnormalities that require more caution. Therefore, in this case, safety pharmacology provides insights 

into potential mechanisms through which various drugs exert their toxicities. These predictive models 

are useful tools for analyzing compounds for possible heart toxicity, ultimately leading to the 

development of safer medications with fewer cardiovascular adverse effects [15]. 

Machine learning algorithms such as support vector machines (SVM) and k-nearest neighbors (k-NN) 

have been shown to improve standard QSAR models for predicting drug toxicity. It has been 

demonstrated that by optimizing traditional QSAR models with biological algorithms, random forests, 

and artificial neural networks, machine learning techniques like SVM and k-NN can improve their 

ability to forecast drug toxicity. Performance is greatly impacted by these methods, which increase 

prediction accuracy by taking datasets and computational representations into consideration.  To be more 

precise, k-NN has proven to be more successful in predicting the oral LOAEL of rats. It has achieved 

high AUC values of up to 0.814, indicating its efficacy in toxicity prediction. The effectiveness of SVM 

https://www.researchgate.net/profile/Li-Zhang-263/publication/326657632_Applications_of_Machine_Learning_Methods_in_Drug_Toxicity_Prediction/links/5bdbc9e8299bf1124fb42887/Applications-of-Machine-Learning-Methods-in-Drug-Toxicity-Prediction.pdf-
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in toxicity prediction models is demonstrated by the fact that it has been used to classify substances 

based on toxicity, with an average AUC value of 0.91. By integrating these methods with other 

molecular descriptors like Dragon descriptors, PubChem keys, and MACCS fingerprints, the accuracy of 

toxicity prediction is considerably increased by utilizing Big Data and artificial intelligence. 

Furthermore, the combination of human transcriptome data analysis with chemical structure descriptions 

constitutes a considerable leap in machine learning approaches, resulting in a large increase in prediction 

accuracy. This shift towards including transcriptome data allows for a more comprehensive 

understanding of biological mechanisms and cellular responses to harmful chemicals, resulting in more 

accurate drug toxicity predictions [25]. 

Big Data approaches to Cardiovascular medicine 

Big data holds immense potential  for cardiovascular medicine, yet managing and interpreting these 

large-scale datasets poses a significant challenge. It includes a broad spectrum of data types, including 

electronic health records (EHRs), social media data, genetics, and metabolomics. Combining these 

databases could lead to revolutionary changes in clinical trials, personalized medicines, and precision 

cardiovascular medicine. Chronic and varied cardiovascular diseases (CVDs) have been found and 

generally classified into phenotypes based on how they appear clinically. But given the complexity of 

chronic CVDs, it's possible that several causes can result in symptoms that are identical. This implies 

that while typical therapies are based on broad descriptions of the condition, individual responses to  

 
Figure 2. Big Data in Cardiovascular Medicine 

https://www.mdpi.com/1422-0067/19/8/2358
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them may vary. The environment, lifestyle choices, metabolism, and heredity all have an impact on 

CVDs. Due to their various causes and effects, different cardiovascular conditions require different 

treatment approaches [26]. Utilizing big data in cardiovascular medicine is a multifaceted process that 

involves numerous forms of data and processes to properly apply this data for improved treatment 

results. However, in order to respect patient rights and use big data to improve cardiovascular health, 

these improvements are susceptible to ethical considerations.  

A chronic autoimmune disease that damages and inflames joints is called rheumatoid arthritis (RA). 

Primary signs of RA are joint related and RA patients are susceptible to stroke and CVD (covering heart 

attacks, strokes, and atherosclerosis). Risk factors for CVD and stroke in RA patients are smoking, 

obesity, high blood pressure, metabolic syndrome, and abnormal lipid levels. The AI techniques can help 

to devise more accurate risk assessment models by continuous learning from the data resulting in better 

prediction of CVD and stroke risk in RA patients. Combination of different biomarkers like OBBM, 

LBBM, RBBM and GBBM through the AI techniques will also help to better evaluate CVD and stroke 

risk in RA patients. The latest advancement in the field speculates to allow the use of combined genetic 

and AI platforms to check the severity of CVD and stroke in RA patients [27]. Shameer et al (2018) used 

the genetic data and deep learning algorithms on the electronic health records to devise a predictive 

model for the unfavorable cardiac events. The study explained to us how the AI-based risk score models 

may help to identify the people who are at high risks of heart problems and proper interventions can be 

made with special preventive measures. AI may alter the future of cardiac imaging and treatment 

through AI-driven precision healthcare. Convolutional neural networks (CNNs) were trained on cardiac 

imaging data in a different study by Wolterink et al. (2019) to automatically segment and measure 

cardiac regions such the left ventricle and coronary arteries. The study demonstrated how AI-assisted 

image processing could improve diagnostic precision, improve the interpretation of cardiac imaging 

tests, and support patients with heart problems in making treatment decisions [28]. The majority of 

individuals believe cardiovascular diseases (CVDs) are inherited. A lower risk of coronary heart disease 

is linked to protective genetic variants, like protein-inactivating variants in the NPC1L1 gene. On the 

other hand, specific gene mutations such as those in the LDLR gene indicate familial 

hypercholesterolemia.  

The limitations of large-scale Genome-Wide Association Studies (GWAS) lie in their inability to 

identify pathogenic genes due to statistical power constraints and variations in genetic diversity among 

populations. An alternative approach would be focusing on genes associated with stress adaptation or 

resilience— which can provide protection against adverse cardiovascular phenotypes. Through big data, 

genomics can be better related to precision phenotyping in cardiovascular medicine; a move that sees 

increased sample sizes coupled with a sophisticated characterization of nuanced pathophenotypes, 

alongside ideal analytical strategies like network medicine. Transcriptomics, proteomics, and 

metabolomics are examples of multi-dimensional data that network medicine integrates with clinical 

data to understand complicated cardiovascular illnesses at numerous biological levels. Precision 

medicine therapies targeted at restoring normal network function and improving clinical outcomes in 

individuals with cardiovascular disorders are made possible by network medicine through the analysis of 

personalized disease modules. Network medicine leverages unsupervised analyses of proteomic data to 

identify patient subgroups and refine biological classifications, offering potential for personalized 

https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/10786
https://dm5migu4zj3pb.cloudfront.net/manuscripts/129000/129203/cache/129203.1-20201218131307-covered-e0fd13ba177f913fd3156f593ead4cfd.pdf
https://redc.revistas-csic.com/index.php/Jorunal/article/download/212/177
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treatment strategies. It introduces the concept of individualized molecular networks, called 

'reticulocytes', which can be personalized further with unique exposomes, environmental exposures, and 

lifestyle factors, providing a more holistic understanding of disease mechanisms [29]. 

Computational techniques for neurodegenerative diseases 

Neurodegenerative illnesses advance slowly and are exceedingly difficult to detect,  posing a serious 

risk. In general, conventional techniques are insufficient in terms of quick diagnosis and effective 

monitoring.  However, Advanced machine learning techniques have provided new insights into the 

causes of various disorders and suggest potential treatment options. One of these methods is the effective 

estimation of illness risk using Polygenic score-based genetic data aggregation. The use of polygenic 

scores and epistatic interactions for risk assessment is one of the primary objectives of precision 

medicine in neurodegenerative illnesses. Due to the identification of several susceptibility variations that 

affect the development and progression of diseases such as Parkinson's disease (PD), next-generation 

sequencing (NGS) technologies have provided an improved understanding of these intricate pathologies. 

When combined, these variants provide important insights into the genetic components of various 

disorders, despite the small odds ratios of the individual variants. Patients can be categorized according 

to their age of onset and unique endophenotype, and polygenic scores which combine the effects of 

many genetic variants-can be used to predict the likelihood that a disease would develop. For instance, 

compared to people with a later onset, those with a polygenic score higher than 1.5 are more likely to 

experience early-onset Parkinson's disease (PD) [30].  

Clinical practices related to Alzheimer's disease (AD) and related disorders are being transformed by big 

data and computational resources, according to studies. Recent research highlights the process of 

combining many data sources, such as biomarkers, genomic profiles, cognitive tests, and high-resolution 

medical imaging, to create comprehensive, unique health profiles. Patterns and predictors of illness 

progression can be found through the use of machine learning algorithms, especially those built for 

handling large-scale and high-dimensional data. In order to identify modifiable risk variables and multi-

determinant causal linkages, studies have emphasized the use of both supervised and unsupervised 

learning approaches in the analysis of these large datasets. An example of its use in the analysis of brain 

imaging data is the use of convolutional neural networks (CNNs), which have shown potential in 

precisely recognising early signs of Alzheimer's disease (AD) [31]. Using genetic data, a convolutional 

neural network (CNN) called ALS-Net has been developed to predict the onset of amyotrophic lateral 

sclerosis (ALS). Motor neurons are impacted as the neurodegenerative disease progresses, weakening 

muscles until they eventually collapse and result in paralysis. Their complicated genetic makeup is 

caused by a variety of causes, one of which is the presence of very significant genes and polymorphisms 

that control gene expression within promoter Because promoter regions are known to be sensitive to 

mutations that cause disease, ALS-Net's structure makes use of the structure of genomic data. In order to 

improve prediction accuracy, a two-level strategy was utilized. The model can capture intricate 

interactions between genetic variations that may be involved in ALS because of its structure. Research 

shows that when it comes to genotype-based ALS prediction, ALS-Net performs better than 

conventional classification methods like logistic regression and support vector machines. Massive 

amounts of genetic data can be processed and analyzed using ALS-Net, showcasing its potential. ALS-

Net's capacity to analyze vast volumes of genomic data, with a focus on discovering genetic markers and 

https://doi.org/10.1039/c6nr06417e
https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2018.00701/full
https://doi.org/10.60087/jklst.v3.n4.p11
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comprehending the genetic origins of disorders like ALS, indicates the potential of machine learning 

approaches in precision medicine. There are also some difficulties associated with this implementation. 

These include the requirement for substantial computer resources, the intricacy of preparing genomic 

data, and the need for big, excellent datasets to train the models. Furthermore, a major obstacle still 

facing deep learning models is their interpretability since physicians need easy to comprehend 

predictions in order to make decisions. However, there are also a number of strategies to deal with these 

issues. Resource needs can be reduced by utilizing cloud-based platforms and improving computational 

infrastructure. Creating standardized processes to integrate multi-omics data and pre-process genetic 

data can enhance the capacity for generalization and performance of the model. Moreover, the 

integration of accessible artificial intelligence methodologies can aid in clarifying the decision-making 

procedure of deep learning models, consequently enhancing their adoption and practicality in medical 

environments. It highlights the wider use of deep learning in precision medicine and demonstrates the 

potential of convolutional neural networks in predicting ALS from genetic data.  It also provides the 

foundation for the integration of sophisticated computational tools into clinical practice, which will 

ultimately improve patient care and disease prediction by addressing the issues of data complexity and 

model interpretability [32]. In addition to emphasizing the integration of different data types, the value 

of collaborative networks, and the specific applications in risk assessment and personalized treatment, 

this explanation offers a thorough overview of how computational techniques are being applied to 

neurodegenerative diseases [30]. 

AI for targeted drug delivery in cancer therapy 

AI is increasingly paving the way for early detection of cancer using developing minimally invasive 

procedures such as liquid biopsies for circulating tumor DNA (ctDNA) or cfDNA. Liquid biopsies, 

collected through minimally invasive techniques like blood tests, can help discover cancer early, 

evaluate relapse risk, and guide treatment options [28]. The use of AI in analyzing highly complex 

datasets comprising genetic, phenotypic, and pharmacological interaction data is fundamental to the 

personalization of drug delivery. By precisely delivering medications to particular tissues or cellular 

membranes, this customized technique improves treatment success while lowering unwanted effects. 

Pharmacokinetics evaluation is one prominent area where AI is being used. The models use a variety of 

inputs to estimate the optimal therapeutic doses and delivery timings for regulated pharmaceutical 

release with maximum efficacy and minimal toxicity. AI is also utilized to identify and profile cancer 

biomarkers, which is an important procedure in prognosis, risk stratification, and therapy efficacy. In 

designing and functionality, the drug-loaded nanoparticles use AI to ensure exact targeting to tumor 

sites, reducing harm to healthy tissues and enhancing treatment effectiveness [33].  

Three significant progresses have been made in the use of artificial intelligence in cancer therapy drug 

delivery, to improve therapeutic efficacy and optimize delivery procedures. Machine learning techniques 

improve the design, characterization, and manufacturing of drug delivery nanosystems by analyzing 

large genetic and biological datasets. This enables the rapid discovery of new drugs and accurate 

prediction of small molecule behavior, making AI-integrated drug delivery a key element in advancing 

cancer therapy. AI algorithms are capable of forecasting which treatment combinations have the best 

efficacy and are extremely useful in targeting tumors more precisely. By accurately localizing 

medications at the tumor spot, this predictive capability maximizes therapeutic advantages while 

https://academic.oup.com/bioinformatics/article/35/14/i538/5529261?login=false
https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2018.00701/full
https://redc.revistas-csic.com/index.php/Jorunal/article/download/212/177
https://www.frontiersin.org/articles/10.3389/fmedt.2022.1067144/full
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minimizing negative effects. Personalized therapy approaches are made possible by the integration of AI 

to manage massive and complicated datasets, such as drug characteristics, patient genetic profiles, and 

other biological parameters. AI techniques are also used in developing an understanding and prediction 

of how patients would react to certain combinations of treatments, resulting in the development of more 

specialized and successful treatments. Pharmacokinetics and pharmacodynamics are evaluated by AI to 

guarantee the effectiveness and reliability of medication delivery systems. These developments 

demonstrate how AI may fundamentally alter the way targeted drugs are given in cancer treatment, 

resulting in more accurate and customized regimens [34].    

Targeted cancer treatment may advance significantly with the use of AI when combined with drug 

delivery methods through nanoparticles. AI can optimize the functionality and design of nanoparticles 

(NPs), increasing their precision and efficacy in drug administration. The use of gold and mesoporous 

silica nanoparticles (NPs) incorporated with enzymes as drug delivery nanomotors has been recognised 

in recent study. Improved real-time tracking and active swarming dynamics are made possible by these 

radiolabelled nanomotors for in vivo imaging. This facilitates theranostic applications—a technique in 

nuclear medicine and personalized medicine where one radioactive drug is used to identify (diagnose) 

and another to treat cancerous tumors.  Predicting the presence of cancer cells and optimizing nanorobot 

performance for targeted medication delivery are critical tasks for AI technologies, especially artificial 

neural networks (ANNs). After a tumor diagnosis, fuzzy logic models improve medicine dosage 

prediction for intracellular delivery even further. Despite its promising improvements, nanomedicine 

still faces several challenges, including the influence of enhanced permeability and retention (EPR), 

biocompatibility, medication concentration management, and potential toxicity. Nanorobots have many 

challenges in their therapeutic application, including fabrication-related problems, noise, and 

unidentified properties that alter drug dosage distribution. Artificial intelligence integration may 

minimize these challenges and enhance medicine formulation and dosage distribution by enhancing 

complex data processing and analysis. Moreover, the speed and accuracy of AI for genetic programming 

and pattern recognition play a considerable role in cancer genomics with optimizing efficacy of therapy 

and early identification of markers. Efficacy and reliability of the drug delivery system can be enhanced 

by expediting the study of explanatory- response variables with sophisticated AI techniques such as 

response surface procedure and supervised associating networks [35].  

D. Data Collection and Preprocessing 

Data used in building drug toxicity prediction models 

Information for toxicity prediction is primarily from the drug compound’s chemical structure. These 

chemical structures need to be represented by numbers and characters so that they become computer-

readable and interpretable ways, so-called chemical descriptors, to be effectively processed by 

computers [25]. The descriptor types depend on simple features, like atomic counts or molecular weights 

to structural features [37]. Different combinations of chemical descriptors and machine learning models 

might lead to different performance. Many studies have collected high-quality data from various 

databases on drug toxicity prediction publicly accessible, which is the critical first step for building ML 

models (Table 1). 

Molecular descriptors, the most traditional molecular representations, have been widely utilized in 

toxicological prediction and other Quantitative Structure-Activity Relationship (QSAR) modeling 

https://doi.org/10.1016/j.bios.2017.03.054
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034385/
https://www.mdpi.com/1422-0067/19/8/2358
https://www.sciencedirect.com/science/article/pii/S0022113901003426?casa_token=DzgdWTnke94AAAAA:pLEa0MRQ6qgC6yxWxdujHvqH7k-esD6EvCMKcDoZa1LirplhkGKO6E6Hm2f23fgngQNH0lZ8TA
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studies combined with a variety of machine learning models. Molecular fingerprints is another broadly 

used molecular representation. Structural fingerprints, the most typical type of molecular fingerprints, 

encodes the molecular structure information into binary strings (strings of 0 and 1) [38]. The most seen 

molecular fingerprints include PunChem fingerprint, MACCS fingerprint , Klekota-Roth fingerprint 

[39], Estate fingerprint [40], and etc. Extended Connectivity Fingerprint (ECFP) is a new type of 

molecular representation [41], which was particularly modeled for structure-activity relationship 

modeling, and has a number of valuable, not pre-defined qualities. In addition, any number of different 

molecular features can be represented and interpreted easily with ECFP. Traditionally, quantitative 

structure-activity relationship (QSAR) modeling studies were used for computational drug toxicity 

prediction [42]. QSAR has been used to study the quantitative relationship between molecular structure 

and biological activity [43]. On the other hand, the prediction model which was obtained by combining 

Database 

Name 

Description Reference 

TOXNET -Computerized system of files relevant to toxicology and related 

areas.  

-The world's largest collection of toxicology databases 

-Available files: HSDB (Hazardous Substances Data Bank), TRI 

(Toxic Chemical Release Inventory), IRIS (Integrated Risk 

Information System), etc 

Wu Y & Wang G 

2018 

[25] 

ToxCast High-throughput toxicity data on thousands of chemicals 

- Based on HTS assays, cell-based phenotypic assays, 

and genomic and metabolomic analyses of cells. 

- Providing a standard for consistent and reproducible data 

processing for diverse, targeted bioactivity assay data 

Dix et al.  

2007 

[46] 

admetSAR Accessible high quality datasets about absorption, distribution, 

metabolism, excretion, and toxicity (ADMET)  

- Containing over 210,000 ADMET annotated data points 

- open source, text and structure searchable, continually 

updated 

Cheng 2012 

[47] 

PubChem The world’s largest collection of freely accessible chemical 

information 

- Including physical properties, biological activities, safety 

and toxicity information, etc 

- Name, molecular formula,  chemical structure, and other 

identifiers  searchable 

- Used in many ML 

Kim 2021 

[48] 

ISSTOX Chemical toxicity databases 

Containing experimental results relative to various types of 

Benigni et al. 

2013 

https://www.researchgate.net/profile/Li-Zhang-263/publication/326657632_Applications_of_Machine_Learning_Methods_in_Drug_Toxicity_Prediction/links/5bdbc9e8299bf1124fb42887/Applications-of-Machine-Learning-Methods-in-Drug-Toxicity-Prediction.pdf
https://academic.oup.com/bioinformatics/article/24/21/2518/192573
https://pubs.acs.org/doi/pdf/10.1021/ci00028a014
https://pubs.acs.org/doi/abs/10.1021/ci100050t
https://pubs.acs.org/doi/abs/10.1021/acs.chemrestox.0c00316
https://pubs.acs.org/doi/pdf/10.1021/ar50020a002
https://www.mdpi.com/1422-0067/19/8/2358
https://pubmed.ncbi.nlm.nih.gov/16963515/
https://pubs.acs.org/doi/10.1021/ci300367a
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363119/


 

Advanced International Journal of Multidisciplinary Research 
  

E-ISSN: 2584-0487                                                                                                                editor@aijmr.com 
 

Volume 2, Issue 5, September-October 2024 
 

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1077 
 

 

AIJMR24051077 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 13 
 

Table 1. Publicly accessible databases for drug toxicity prediction 

chemical toxicity 

- Characterized by the use of contemporary information 

technologies and by organization of high-quality 

biological data 

[49] 

ChEMBL An open large-scale bioactivity database 

- Containing binding, functional and ADMET information 

for a huge number of drug-like bioactive compounds 

- 5.4 million bioactivity measurements for over 1 million 

compounds and 5,200 protein targets 

Gaulton et al. 

2012 

[50] 

BindingDB One of the most extensive public-accessible databases of 

protein-ligand binding affinities 

- Currently holding ~20,000 measurements for 

∼11 000 different small molecule ligands and 

110 different drug-targets 

Liu et al. 

2007 

[51] 

T3DB The Toxin-Toxin-Target database containing information about 

the toxic exposome 

- Currently corrected and  upgraded to include more 

compounds, targets,  gene expression datasets along 

with extensive toxic compound concentration or exposure 

data. 

Wishart et al. 

2015 

[52] 

DrugBank A bioinformatics and cheminformatics resource combining 

sophisticated drug data with comprehensive target information 

- Characterized by the richness, uniqueness and quality of 

its data 

- Including illustrated drug-action pathways, drug 

transporter data, drug metabolite data, 

pharmacogenomic data, adverse drug response data, 

ADMET data, pharmacokinetic data, extensive computed 

property data and chemical classification data 

Knox et al. 

2011 

[53] 

ECoTOX A reliable source of curated, currently updated, ecological 

toxicity data for chemical assessments and research 

- Providing single chemical ecotoxicity data for over 12,000 

chemicals 

Olker et al. 

2022 

[54] 

SuperToxic A comprehensive database of toxic compounds 

- Collection of toxic compounds compiling about 60,000 

compounds and their structures 

- Classified depending on their toxicity, based on over 2 

million measurements 

Schmidt et al. 

2009 

[55] 

https://pubmed.ncbi.nlm.nih.gov/23470317/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245175/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1751547/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383875/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013709/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9408435/
https://pubmed.ncbi.nlm.nih.gov/19004875/
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machine learning and the molecular descriptors is similar to QSAR toxicity but including environmental 

behavior of chemicals [44,45].  

Besides chemical structures, machines should fully exploit gene expression data and transcriptome 

expression data for feature selection and classification in drug trials because not only drugs are designed 

for humans, but also those data reflect the state shifts of a cell, either in vivo or in vitro [56]. Drug 

toxicity can be predicted by the analysis of changes in the transcriptome [57]. Moreover, analyzing gene 

interaction networks allows one to predict the delayed chemical toxicity as well as to be provided with 

richer biological information. Although the number of affected genes is small at the induction, much 

greater gene expression changes will take place 24 hours after induction [58]. In other words, as gene 

expression doesn’t occur immediately, toxicity onset is often delayed and it is difficult to identify 

immediately after the induction. Therefore, the degree of toxicity would positively correlate with the 

degree of connectivity of the genetic network [59,60]. Incorporating genetic information has a few more 

advantages in terms of the accuracy of toxicity prediction and QSAR construction [61]. When it comes 

to biological information, it is not only at the molecular level(involving only a single pair of drug-

protein interaction), but at the systems level with a drug targeting the entire gene interaction network. 

Furthermore, one is able to distinguish between toxic and non-toxic and perform classified toxicity 

prediction. 

However, there are still a few limitations in the use of computational techniques in toxicology despite 

their significance. One of the main challenges is the lack of ability to obtain a mechanistic explanation or 

understanding of the detected toxic responses. The ML algorithms are generally considered as back 

boxes which are capable of managing complicated problems efficiently but often lack an explanation of 

the prediction [62]. In addition to difficulties in interpretation, it is difficult to precisely estimate the 

prediction performance of the model without using cross-validation [63,64,65]. Unless the model repeats 

enough times for building a large number of models, the accuracy of the estimated model may be biased. 

Many studies have applied machine learning methods in drug toxicity prediction, such as diverse 

toxicity endpoints, such as an carcinogenicity, mutagenicity, hepatotoxicity, acute oral toxicity, and 

human ether-a-go-go-related gene (hEGR) inhibition [38], as mentioned above, with varied types of 

datasets like molecular descriptors and fingerprints. Following are the recent drug prediction models 

integrated several ML methods with molecular descriptors and data including a number of chemical 

compounds  reported in the literature. 

Carcinogenicity: Helma et al. [66] developed a rodent carcinogenicity prediction model (named lazer) in 

order to predict carcinogenicity of diverse chemicals using a modified k-nearest-neighbor (knn) 

algorithm and the Lois Gold Carcinogenic Potency Database (CPDB), which contains findings of 2-year 

rodent carcinogenicity study for 1481 chemicals with diverse chemical structures. Making use of the 

same database and the twenty-seven two-dimensional MDL descriptors as molecular representation, 

Fjdorova et al. [67] developed counter propagation artificial neural network (CP ANN) models, and two 

public carcinogenicity prediction models using 8 MDL descriptors and 12 Dragon descriptors based on 

these algorithms. 

Mutagenicity: The Ames mutagenicity benchmark dataset developed by Hansen et al. [68], which 

contains 2503 positive compounds and 3009 negative compounds(6512 in total), is the most commonly 

used training dataset for the development of predictive compound mutagenicity models. Xu et al. [69] 

http://www.ncbi.nlm.nih.gov/pubmed/8790641
https://onlinelibrary.wiley.com/doi/10.1002/qsar.19950140102
http://www.ncbi.nlm.nih.gov/pubmed/28993656
http://www.ncbi.nlm.nih.gov/pubmed/27768846
http://www.ncbi.nlm.nih.gov/pubmed/24217556
http://www.ncbi.nlm.nih.gov/pubmed/26615774
http://www.ncbi.nlm.nih.gov/pubmed/22749929
http://www.ncbi.nlm.nih.gov/pubmed/27207879
https://www.frontiersin.org/articles/10.3389/fenvs.2015.00080/full
https://link.springer.com/chapter/10.1007/978-3-319-10590-1_53
https://openaccess.thecvf.com/content_cvpr_2015/html/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.html
http://www.ncbi.nlm.nih.gov/pubmed/27474269
https://www.researchgate.net/profile/Li-Zhang-263/publication/326657632_Applications_of_Machine_Learning_Methods_in_Drug_Toxicity_Prediction/links/5bdbc9e8299bf1124fb42887/Applications-of-Machine-Learning-Methods-in-Drug-Toxicity-Prediction.pdf
https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2013.00038/full
https://link.springer.com/article/10.1007/s11030-009-9190-4
https://pubs.acs.org/doi/abs/10.1021/ci900161g
https://pubs.acs.org/doi/abs/10.1021/ci300400a
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established a series of mutagenicity prediction models using five machine learning algorithms (SVM, 

knn, naive Bayes, ANN and decision trees) and a data set with 7,617 compounds. 

Hepatotoxicity: A hepatotoxicity prediction model developed by Ekins et al. [70] is based on the 

Bayesian approach utilizing ECFP molecular fingerprinting. The model was trained on a training set of 

295 compounds and tested on a test set of 237 compounds. Zhang et al. [71] modeled a series of 

hepatotoxicity prediction models applying SVM in calculated three types of molecular fingerprints for 

1229 compounds and Naive Bayes algorithm for the specificity improvement. 

Acute Oral Toxicity: Li et al. [72] developed several multiclassification models for acute oral toxicity 

prediction using five machine learning methods based on a data set including 12204 diverse compounds 

with LD50 values. 

hERG inhibition: Zhang et al. [73] collected a hERG blockage database containing 1570 compounds and 

established several classification models for hERG inhibition prediction with five machine learning and 

molecular descriptors combining fingerprints. 

Traditional and AI-based approaches for data collection in Cardiovascular diseases 

AI-driven approaches have revolutionized the approaches to cardiovascular diseases (CVDs) including 

coronary artery disease (CAD), heart failure, arrhythmias, and congenital heart defects [28]. Due to the 

complex and heterogeneous nature of CVD, the traditional paradigm, which mostly a fixed set of 

observation variables initially and a considerable length of period till the outcomes collection are 

required, used for building risk models from a population-based study faces a severe challenge to the 

development of accuracy [74,75]. Research in CVD has mostly persisted for over a century and 

progressed with reductionist methods that deconstruct the problem into its constituents, investigate the 

parts independently to get insights on associations and causal relationships. However, this reductionist 

approach remains an inability to uncover a complex genotype-phenotype relationship [76]. 

Reductionism professes that a pathogenetic variant functions as the primary determinant of a disease 

trait or endophenotype, which is a critical step when it comes to development of a clinical disorder. 

Rather, the expression of overt cardiovascular end-pathophenotypes more likely reflects the combined 

and interacting effects of perturbations in a number of potentially phenotypically related genes that are 

modified by an individual’s exposome, the cumulative environmental exposures that affect health [77]. 

Due to this feature, GWAS used to dissect complex disorders like CVD has several limitations. GWAS 

are limited by the fact that the genetic heterogeneity of many variants is common and also sensitivity is 

still restricted by the depth and coverage of the sequencing platform. In addition, GWAS are only 

capable of providing an association between geon regions that the pathogenic gene might reside in and 

the disease phenotype. Insufficiency of population also restricts the statistical power needed to discover 

even simple gene-gene interaction, even for highly prevalent CVDs (Figure 3) [78]. 

On the other hand, AI-based technologies aim to build algorithms for better accuracy and prediction of 

heart-related disease by combining these AI and ML technologies with a large group of health records 

with extensive variety, high volume, and utmost acquisition speed (e.g human gut microbiome 

sequencing, multi-dimensional data, social media, and data from standardized electronic health records 

(EHRs), precision medicine platforms and data from wearable technology [79,80,81]. Current 

understanding of the heterogeneity in cardiovascular disease requires compilation of a variety of big data 

sources. Data collected from these domains are compliant to novel network medicine analytics to 

https://dmd.aspetjournals.org/content/38/12/2302.short
https://onlinelibrary.wiley.com/doi/abs/10.1002/minf.201500055
https://pubs.acs.org/doi/abs/10.1021/ci5000467
https://academic.oup.com/toxres/article/5/2/570/5568649
https://redc.revistas-csic.com/index.php/Jorunal/article/download/212/177
https://www.sciencedirect.com/science/article/pii/S1109966616300379
https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.117.306458
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764826/#:~:text=Research%20in%20CVD%20and%20cardiometabolic,learnings%20to%20understand%20the%20whole.
https://www.cell.com/fulltext/S0092-8674(12)00288-7
https://www.nature.com/articles/ng.3396
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003298335-7/heart-disease-prediction-using-machine-learning-big-data-vandana-rawat-devesh-pratap-singh-neelam-singh-shruti-negi
https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.117.032041
https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.24282
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generate individual patient networks based on population-level data as well as reticulotypes (individuals’ 

unique genomic and molecular makeup). Network medicine facilitates precision endophenotyping and 

phenotyping for patients with similar clinical symptoms. Utilizing big data, patient-specific integrated 

networks can be modeled, and the consequences of perturbations occurring due to reticulotypes can be 

scouted. The reticulotype also controls endophenotype and defines a patient-specific phenotype that 

might not have been apparent before [27]. 

Cardiovascular diseases are compilations of complicated clinical phenotypes including a number of 

different endophenotypes such as inflammation, calcification, thrombosis, fibrosis. That is, these 

complex endophenotypes cannot be explained by just a single genetic variant. The classical model based 

on reductionism purports a disease trait or endophenotype can be determined by a pathogenic gene 

variant present in GWAS. (B) Contemporary viewpoint of CVDs using big data sources enables not only 

to create patient-specific integrated networks or reticulotypes but also defines a patient-specific 

pathophenotypes and treatments. Moreover, there are some reliable websites mostly used for collecting 

data of patients, such as UCI and Kaggle. UCI Machine Learning Repository and Cleveland Heart  

 
Figure 3. Classical and contemporary models processing data towards the treatments 

 

Disease dataset, which is acquired from Cleveland Clinic Foundation, Cleveland, OH and provided by 

Robert Detrano, M.D., Ph.D. of the V.A. Medical Center, Long Beach, CA,  contains 76 features and 

303 instances The UCI repository dataset, especially the Hungarian and the Cleveland data sets, is 

promising in terms of the number of data instances and quality of data [82]. As an example, David and 

Belcy conducted a comparison study on heart disease with RF, DT, and NB to build a prediction method 

https://pubmed.ncbi.nlm.nih.gov/31895052/
https://thesai.org/Downloads/Volume10No12/Paper_36-Cardiovascular_Disease_Diagnosis.pdf
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for examination and prediction of the potential of heart disease. The statlog dataset from the UCI 

repository, which included 270 cases and 13 attributes, was used for the model training and testing. 

Nandhini et al. developed a model for real-time prediction of cardiovascular disease [83]. They utilized 

the dataset from UCI repository of common Cleveland HD datasets containing 303 cases and 76 gestures 

to train and test ML techniques such as NB, SVM, RF, LR, KNN and DT.  

There are some challenges and limitations that remain to be addressed in the implementation of a big 

data approach in cardiovascular medicine. First of all, integrating a less controlled database into clinical 

trials by using traditional methods is difficult due to the ideal conditions(e.g. select patients and 

experienced physicians) [84]. Second, heterogeneity and disparities among datasets pose utilization 

challenges, while latent variables like hidden medical and lifestyle factors may have been overlooked in 

previous studies [85,86]. Lifestyle variables, often novel, are challenging to integrate due to data privacy 

issues and lack of public available application programming (API) for consumer devices to interact with 

electronic health records (EHRs) [87]. Wearable technology advancements could track real-time lifestyle 

factors, which could exclude the possibility of recall or social desirability biases [88], but issues with 

FDA approval, validation, and long-term behavioral change motivation remain [89,90]. Third, data 

quality, inconsistency, instability, and validation issues are barriers necessitating critical data imputation 

for big data analysis [91]. Fourth, synchronizing existing data can be challenging because of 

heterogeneity of multiple databases (i.e., different diagnostic criteria, different laboratories) [92,93]. 

Fifth, data privacy issues may remain unsolved with de-identification because there are various ways 

that re-identification can be performed [94]. Sixth, genomic data, or GWAS, may still need human 

intervention [95] as there’s insufficient evidence that DNA testing has a significant impact on motivating 

behavior change [96]. Last challenge, which is so important that all big-data analyses must take into 

consideration, is the ascertainment of causality from observational and retrospective studies. This is 

because most AI/ML methods are not clearly designed for modeling causality. For example, although 

gray hair, wrinkles, baldness can be presented by both aging and CVD and are highly correlated, the 

therapies for aging (e.g. hair dyes or wrinkle cream) and the treatments for CVD are completely 

different. That is, if we only pursue this association and design therapies for aging, we would totally fail 

to prevent CVDs [97,98,99]. 

ML is currently applied in a variety of areas in cardiology, including diagnostic imaging, 

electrocardiography (ECG), patient cardiovascular risk assessment and prognosis prediction. For 

instance, Madani et al. [100] trained a convolutional neural network (CNN) to recognize 15 standard 

echocardiographic views, using a training and validation set of over 200,000 images and a test set of 

20,000. It outperformed board-certified echocardiographers with an overall accuracy of 91.7%. The 

study conducted by Galloway, et al. [101] used ML for the screening of hyperkalemia in patients with 

chronic kidney disease from ECG derived from three Mayo Clinic centers in Minnesota, Florida, and 

Arizona using an analysis of a database of 449,380 patients of different hospitals and obtained high 

sensitivity. 

Data Collection for application of ML in neurodegenerative disease  

Neurological disorders, such as stroke, Alzheimer’s disease, Parkinson's disease, epilepsy, and 

Amyotrophic lateral sclerosis (ALS), raise difficulties, on account of their complex etiology, 

heterogeneous presentation, and variable response to medication. The employment of AI and ML 

https://ieeexplore.ieee.org/abstract/document/9362842
https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2017.00187/full
https://www.sciencedirect.com/science/article/abs/pii/S089473171730500X
https://academic.oup.com/eurheartj/article/37/25/1967/1748988
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859641/
https://www.tandfonline.com/doi/full/10.2147/JMDH.S104807
https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2500062
https://jamanetwork.com/journals/jama/article-abstract/2553448?casa_token=dQYNFp1DSWEAAAAA:745-w9exd9wb6FDmowe7DjvyQZeJ6VBCs9xpgC2sfjjOAC8NWuzZgaL7EXqxBDPo4t0vVBLa8W4
https://academic.oup.com/gigascience/article/5/1/s13742-016-0117-6/2720974
https://www.thieme-connect.com/products/ejournals/abstract/10.15265/IY-2014-0024
https://www.ahajournals.org/doi/full/10.1161/CIRCRESAHA.115.306013
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https://www.sciencedirect.com/science/article/abs/pii/0002870395902015
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technologies into precision medicine has shown the potential in analysis of various types of biomedical 

big data. A large volume of data including electronic health records (EHRs), genomic profiles, imaging 

data, wearable sensor data and multi-omics [27] has been rapidly produced, as production of  a wide 

variety of biomedical data getting simpler and faster [102], to tackle its heterogeneity, driven first by 

genomic studies, and to date transcriptomic and epigenomic studies [27]. Omics refers to the 

comprehensive characterization and quantification of molecules such as genes and proteins clustered 

depending on their structural or functional similarities, and include genomics, proteomics, 

metabolomics, etc. Multi-omics data integration combines information from different layers of omics 

data to obtain understandings regarding how different biological systems interact at a molecular level 

[103,104], which is a crucial step to recognize inherent pathogenic pathways in different disease 

phenotypes. It is pertinent in neurodegenerative diseases (NDs) such as AD and PD, which involve a 

multifactorial etiology with heterogeneous clinical pictures and mixed pathologies [105]. EHRs are 

composed of patients’ demographics along with clinical measurements, interventions, clinical laboratory 

tests, and medical data. EHRs can be divided into structured, which are represented by diagnostic codes 

and laboratory test outcomes, and unstructured, which are represented by patients’ status annotated by  

physicians. Classical statistical methods are considered not suitable for analysis of these kinds of data 

and more advanced technologies are required. Deep learning models particularly can be exploited to find 

patterns in a patient’s broad scope view and search explanations of differences between groups as 

hypothesis-free methods, compared to classical experiments with hypothesis [102]. 

Besides the traditional and prevalent issues such as overfitting and interpretability, one of the major 

issues in big data analysis is data isolation, posing considerable challenges for researchers to access, 

integrate, and construct noisy, complex, and high-dimensional data. This is because healthcare data are 

typically dispersed across various medical systems and many of these are not interconnected, resulting in 

isolated data and the rise in the expenses of institutions. It impedes the healthcare entities from 

leveraging the latest Information Technologies (IT) innovations including data processing and cloud 

computing, which might be helpful for improved care and reduced costs [106]. Also, there’s a concern 

with regard to the reproducibility of other studies and the implementation of others’ AI models. This 

occurs owing to limited open-source implementations provided by authors and the difficulty of 

recreating a network in a different software [107]. Lastly, data sparseness in computational diagnosis 

and treatment remains as an unsolved challenge. Sparse features, which include most zero values and 

relatively few nonzero values, in data are inefficient as they take up computing memory and reduce 

generalization ability [108]. 

A deep learning based model using genome data for ALS that was designed by B. Yin et al showed 

promise of DNNs. Most heritability of ALS hasn’t been explained so far while several major genetic risk 

factors have been identified. This is because it cannot be detected using the currently available genotype-

phenotype association approaches [109].  As a result of the recent advances, deep neural networks 

(DNNs) have proven to be powerful classifiers in several applications including bioinformatics [65] due 

to its ability to handle a significantly larger number of input variables than most other ML methods 

[110], a prerequisite for the analysis of genome data.  

However, several challenges need to be overcome for DNNs to map genetic variants to disease (ALS) 

status. First, the size of genome data (which amount to usually millions) is numerous for these models to 
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deal with easily. Second, interpreting the reason behind a DNN's classification of a sample as a case or 

control which is a primary drawback in genotype-phenotype association. Third, the employment of 

convolutional filters that utilizes the position invariance of local structures in images, which makes it 

appropriate for image classification. But when it comes to genome data, it doesn’t have local structure, 

and applying convolution is less straightforward [32]. 

In order to predict the occurrence of ALS from individual genotype, B. Yin et al developed a deep 

learning based approach for the classification of ALS patients versus healthy controls from the Dutch 

cohort of the Project MinE dataset, a global effort to collect whole-genome data for the identification of 

ALS-causing variants [111].They validated their approach using GWAS, the cutting-edge in analyzing 

genotype-phenotype data [112]. They presented Promoter-CNN (Promoter region-specific neural net) + 

ALS-net (the network that classifies samples based on a combination of promoter regions) and observed 

a few improvements over logistic regression, which is typically used to predict continuous outcome 

scores [112]. Using GWAS, they established a two-step approach and applied it to neural network 

technologies for identification of associations between genotypes and the occurrence of ALS. The first 

step comprises the classifying process for each promoter region, in which they assume that the majority 

of variants related to disease phenotypes inhabit ahead genes. They only selected eight best performing 

promoter regions based on individuals’ genomic data from a single promoter region. Afterwards, in the 

second step, an overall classifier trained for final classification is combined with the genomic data from 

selected promoter regions. They improved the drawback of earlier studies that epistasis is overlooked 

and variants with a small effect on their own will not be incorporated in further analysis, and illustrated 

the promoter regions on the different chromosomes interact in a non-additive manner with their model. 

Additionally, ALS-Net outperforms all other methods in terms of recall and classification accuracy, and 

provides a better trade-off between precision and recall. The architecture of ALS-Net, which was 

originally optimized for chromosome 7, also performed excellently when applying it to the classification 

of samples from genotype data from other chromosomes with no need for adjustment. This shows the 

promising impact of this architecture to be applicable more universally [32]. 

Generating Datasets for Cancer Predictive Models 

AI and machine learning have made significant contributions to the critical area of oncology, and the 

main determinants of tumor aggressiveness, clinical decision-making and outcomes such as timing of 

cancer detection, accuracy of cancer diagnosis and staging, benefit from these approaches. In past 

decades, efforts for generation of large cancer datasets have been made by several initiatives worldwide. 

These datasets for building predictive models, which are used for informing both research and clinical 

decisions, are obtained from profiling tumor samples using diverse high throughput platforms and 

technologies. The Cancer Genome Atlas (TCGA) is the most comprehensive compliance of tumor 

profiles which are publicly available and includes numerous data types encompassing genomics, 

epigenomics, proteomics, histopathology and radiology images [113]. The Pan-Cancer Analysis of 

Whole Genomes (PCAWG), METABRIC, and GENIE have also curated a large number of cancer 

genomic profiles which the public are able to access. Besides these datasets, there are several other 

technologies that have resulted in the production of a wide ranging array of datasets, such as DNA 

methylation profiles, large scale proteomics studies, perturbation studies containing cell viability or 
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cytotoxicity assays using small molecules, RNA interference (RNAi) or CRISPR screens, protein-

protein interaction networks.  

In machine learning workflows, the initial and crucial phases involve data collection and cleaning, as the 

quality of a model is directly dependent on the quality of the training data. For verification of high 

quality of the collected data, it needs to be corrected for potential noise in both non-image (e.g. 

erroneous data entries, missing values) and image (e.g. high intensity pixels) types of data. Second, the 

data needs to be reviewed for possible biases that might cause underfitting the model, or high variance 

that might cause overfitting the model. Third, the model needs to be measured using the Area Under the 

Receiver Operator Curve (AUC) or the Area Under the Precision-Recall Curve (AUPRC). They are used 

for quantification of the tradeoff between sensitivity and specificity, which are required to be considered 

as a good classifier.  Fourth, it is crucial to confirm the model on external independent datasets to ensure 

that the model is stable and generalizes well. The model is required to keep being tested from time-to-

time as newer updated data sets become available to prevent the performance of it from degrading due to 

concept drift. In other words, it is required to show stability when the relationship between the input and 

output variables changes over time unpredictably [113].  

Deep Learning-based models have been reported to have potential not only in the accurate diagnosis and 

identification of cancer subtypes directly from histopathological images, other medical  images (those 

acquired through non-invasive techniques such as Computed Tomography (CT) scans, Magnetic 

Resonance Imaging (MRI) and mammograms) and even images of suspicious lesions , but in cancer 

staging and grading. As an example, Coudray et al. [114] developed and applied DeepPATH, Inception-

v3 architecture-based models to classify H&E-stained whole slide images (WSI) for the TCGA lung 

cancer cohort into three classes (normal, lung adenocarcinoma and lung squamous cell carcinoma) with 

high AUC. This research demonstrated DNNs are powerful enough to be used for distinguishing 

between closely related cancer subtypes and detecting benign vs. malignant tissue (i.e. non-cancerous vs. 

cancerous tissue), which is regarded as a challenging task. Cancer staging and grading is the process that 

deminines how aggressive and advanced the observed cancer is, and another crucial component 

throughout the diagnostic process. DNNs have shown promising results in predicting Gleason scores, a 

combination of two scores measuring how prevalent tumor cells are in two distinct locations on a slide, 

from histopathology images of prostate tumors, radiology images, and increasingly non-imaging data 

(such as genomic profiles) obtained by next generation sequencing (NGS) [35]. However, DNN has a 

limitation in terms of multi-class classification using mutation data. For example, Sun et al. built and 

applied DNN to genomic point mutations to classify tissues into either of the 12 TCGA cancer types or 

healthy tissues obtained from the 1000 Genomic Projects [115]. The classifier was trained on the most 

frequent cancer specific point mutations obtained from whole exome sequencing profiles, and 

successfully distinguished between healthy and tumor tissue with high accuracy (AUC=0.94), but did 

not perform as well in a multi-class classification task to distinguish all of 12-cancer types at the same 

time. 

The integration of AI with clinical interventions necessitates the fulfillment of several specific 

conditions. First of all, data should adequately encompass the entire human population. In cancer, it has 

been reported that race-specific variations influence the occurrence and frequency of genomic 

aberrations. Existing datasets commonly used for AI model training and testing still contain inherent 
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bias towards particular race and ethnicity. As an example, in TCGA, the largest repository of diverse 

cancer datasets, white individuals with European ancestry take the most part of it [116]. Aside from data 

biases, even though data can be acquired from various platforms, external institutions are limited to 

access the data for independent use, especially for private or controlled access data sets. Moreover, as to 

code sharing, the models of published studies should be reproducible by others independently to verify 

they are translatable and clinically relevant. This can be done by sharing well annotated code for the 

model with clear descriptions of the optimized hyperparameters and hardware specification, which is not 

adopted generally. Also, while AI cancer models currently used have a strong impact on image and 

omics data, the huge part of electronic health records (EHRs), which cover one of the richest data of 

patient health and clinical history, hasn’t been fully utilized. This is because records not being organized 

with high levels of noise, sparseness and inconsistencies, that is, committed curation and data cleaning 

are required [35]. 

A. Case Studies 

Case Study 1: Computational precision medicine for Alzheimer’s and other neurodegenerative illnesses 

A study by Zang et al, 2022 utilized a high-throughput clinical trial simulation technology and real-

world data to simulate 430,000 Alzheimer's disease medication repurposing trials, including propensity 

score-based causal inference. Repurposing trials examine current medications for new therapeutic 

objectives, with the goal of discovering new applications or advantages that go beyond its original 

usage. Propensity score-based causal inference is a statistical approach for estimating causal effects in 

observational research by balancing covariates across treatment groups, hence eliminating bias and 

confounding effects. It identified eight medications that might assist Alzheimer's patients and 

emphasized the need of a model selection technique in enhancing confounding balance in large-scale 

studies. The study revealed eight medications with various initial indications that may assist Alzheimer's 

disease patients. The suggested model selection technique considerably enhanced confounding balance 

performance in simulated trials, highlighting the significance of model selection in large-scale trial 

balancing. A regularized logistic regression-based propensity score model outperformed deep 

learning-based models in trial balancing, due to its effective use of propensity score-based causal 

inference. This statistical method assists in balancing variables between treatment groups, reducing bias 

and confounding factors and improving model accuracy. This case study demonstrates the practical 

application of computational approaches in precision medicine for neurodegenerative illnesses, 

highlighting the importance of model selection in generating balanced trial results [117].   

Case Study 2: Integrating Computational Innovation for Parkinson's Disease 

Unlike previous techniques, which frequently depend on single biomarkers or limited data kinds, 

Makarious et al.'s 2022 study combined many data modalities. This comprises genetic data, clinical 

records, imaging data, and other omics data (such as proteomics or metabolomics) from PD patients 

without any other additional neurological disease or retraction toward PD diagnosis during follow-up; 

this set of data was collected in collaboration with the AMP PD and GP2 initiatives of PD patients. Data 

from the PPMI and PDBP cohorts were included, considering only those characteristics available in at 

least 80% of the training and validation cohorts. Analyses were restricted to unrelated individuals of 

European ancestry. Standard Illumina technologies were employed to generate DNA and RNA 

sequencing data, while simultaneously applying rigorous quality controls. Regression models with 
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various normalization techniques have been used to select these features to fit data. Respectively, 

multiple ML algorithms were used to stick to a model supplied by performance measures on test data for 

the identifications of performances using AUC, balanced accuracy, sensitivity, and specificity. The 

feature selection was based on the extraTrees algorithm to avoid overfitting and redundancy. Cross-

validation techniques tuned the best-performing algorithm, which was then further validated with the 

PDBP dataset. Further, a post hoc optimization was implemented to adjust the probability threshold to 

improve model accuracy in unbalanced cohorts. As the last phase of the process, Shapley values were 

used to interpret the importance of each feature in the model and make it interactive to find out the 

contribution of features at the individual level in classification. Makarious et al.'s 2022 study represents 

a major advancement in neurodegenerative illness research, with an emphasis on Parkinson's disease 

(PD). The study highlights the potential for computational approaches to revolutionize early diagnosis 

and intervention efforts by combining varied data sources with powerful machine learning techniques. 

The study's goal in merging these varied sources was to capture a more comprehensive perspective of 

the condition, maybe uncovering subtle patterns or interactions that would not be apparent from a single 

source. The study created effective computational models for the early detection of Parkinson's disease. 

These models most likely used machine learning methods that can handle multidimensional data and 

discover complicated patterns across several data types at the same time. These models not only enhance 

diagnostic accuracy but also allow for earlier identification, which is critical for beginning early 

therapies. Beyond diagnosis, the study investigated gene networks and drug-gene interactions in 

Parkinson's disease. This method can provide new biomarkers, therapeutic targets, and personalized 

therapy alternatives. Understanding how genes interact with one another and with drugs might result in 

more effective therapy options customized to patients. The research is significant for its emphasis on 

cost-effectiveness and transparency. The authors reduced data collecting and analysis expenses by 

relying on publicly available data and automated machine learning techniques. Furthermore, they openly 

released their code and findings, encouraging reproducibility and cooperation within the scientific 

community. This study's findings have implications that go beyond Parkinson's illness. Similar 

computational techniques might be used to treat other neurodegenerative disorders, such as Alzheimer's, 

Huntington's, and amyotrophic lateral sclerosis. By utilizing large-scale data integration and 

sophisticated analytics, researchers can obtain deeper insights into disease causes and accelerate the 

development of diagnostic and therapeutic advances [118]. 

Case Study 3: Advancing Predictive Models for Chronic Heart Failure Readmission Risk 

Liu et al. 2022, examined prediction models for readmission risk in Chronic heart failure (CHF) patients. 

This case study demonstrated how predictive models based on big data might estimate the probability of 

readmission in patients with Chronic Heart Failure. The study includes nine CHF readmission prediction 

models, each with a different sample size and modeling approach, including logistic regression, Cox 

proportional hazards, competitive risk, ensemble learning, and Bayesian models. The initial Area under 

the Receiver Operating Characteristic Curve (AUROC) evaluations (0.70 to 0.73) in the study indicate 

that the predictive models were good at distinguishing between CHF patients who would be readmitted 

and those who would not, implying that they were better than random guessing but still had potential for 

improvement. The AUROC is a metric used to evaluate the performance of predictive models. Typical 

values range from 0.5 (random guessing) to 1 (perfect prediction). In the study, initial AUROC 

https://www.nature.com/articles/s41531-022-00288-w
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evaluations of 0.70 to 0.73 indicated that the predictive models were better than random guessing but 

had room for improvement. After verification, the AUROC scores increased to 0.80, demonstrating 

strong predictive accuracy. An AUROC score of 0.80 implies that the revised models were effective in 

predicting readmissions, providing medical professionals with better decision-making choices.  After 

verification, the AUROC scores increased from 0.68 to 0.80. These models were examined using meta-

analysis approaches to determine the predictive value of variables. The top end of this range (0.80) 

implies strong predictive accuracy, demonstrating that the revised models were more effective in 

predicting readmissions, providing medical professionals with greater decision-making choices.  To 

ensure the accuracy of the results, statistical approaches such as odds ratio (OR) or risk ratio (HR) with 

95% confidence intervals were used, as well as sensitivity analysis. The objective of this case study in 

evaluating these models was to give insights into improving the prediction of readmission risk for CHF 

patients utilizing data-driven precision medicine techniques [119]. 

Case Study 4: Enhancing Cardiovascular Disease(CDV) Prediction through Big Data Integration 

The study by Guo et al. 2021, focuses on developing a risk prediction model for incident heart failure 

using machine learning approaches that are specifically targeted to the African American community. It 

used data from the Jackson Heart Study (JHS) database and used several imputation procedures to create 

an ideal prediction model using algorithms such as K-Nearest Neighbour, random forest interpolation, 

and, most significantly, XGBoost. XGBoost performed better, especially when missing rates were less 

than 30%, demonstrating that improved imputation approaches may dramatically improve prediction 

accuracy in datasets with partial information. XGBoost outperformed other machine learning algorithms, 

particularly when dealing with datasets containing missing values, due to its unique handling of missing 

data and strong imputation procedures. A comparative review of machine learning techniques such as 

logistic regression, support vector machines (SVM), AdaBoost, and XGBoost indicated that XGBoost 

beat the rest, with an outstanding Area Under the Curve (AUC) of 0.8409 for predicting heart failure in 

the JHS cohort. To achieve that, after imputations were performed on the JHS data, categorical variables 

were transformed by one-hot coding and continuous variables were normalized using Min-Max 

normalization. This data set was then split 70% for training and 30% for testing. A class imbalance 

problem was recognized, which was handled by adjusting the "class weight" parameter in models such 

as LASSO logistic regression, SVM and random forest. For the tree-based XGBoost algorithm, the 

"scale_pos_weight" parameter was adjusted to improve predictive ability, using K-fold cross-validation. 

Moreover, the algorithm tuning process comprises carrying out a set of parameters to reduce the learning 

rate and add more trees to enhance the algorithm accuracy. This demonstrates the effectiveness of 

gradient boosting approaches in collecting complicated data linkages required for good prediction. The 

study identified certain characteristics, such as variations in diabetic treatment, as important predictors 

of heart failure risk. These variables continuously showed substantial connections to the result across 

various imputation procedures, emphasizing the necessity of careful feature selection and domain 

understanding in developing models.  The study's emphasis on the influence of imputation procedures 

and variable selection gives practical insights for enhancing predictive modeling in healthcare settings. 

While the study focuses on the African American population in the JHS cohort, its techniques and 

conclusions may be applicable to other demographic groups and datasets with comparable features. 

Future study should investigate the models' transferability across different demographics and confirm 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529720/
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their usefulness in a variety of medical settings.  Using these approaches, healthcare practitioners may be 

able to reduce the burden of heart failure by improving the identification of at-risk patients and 

implementing focused intervention measures based on unique patient needs [120]. 

Case Study 5: TargeTox: A Machine Learning Approach for Optimised Drug Toxicity Prediction 

The study by Lysenko et al. 2018 focuses on the development and use of a machine learning method 

called TargeTox, and it predicts drug toxicity in precision medicine. TargeTox, the proposed machine 

learning algorithm, uses drug targets, off-targets, functional impact scores, and biological network data 

to estimate drug toxicity. The study gathers information on pharmacological targets, off-targets, and 

biological networks from many databases and pieces of academic literature. Functional impact scores 

assess the biological importance of drug-target interactions. It also uses data from biological networks to 

better comprehend the overall impact of medication interactions in the cellular environment. TargeTox 

introduces and analyses acquired data using machine learning techniques, discovering drug toxicity-

related patterns. The model is trained using a set of known toxic and non-toxic drugs.  Idiosyncratically 

toxic drugs cause unpredictable, uncommon side effects that are not dose-dependent and are connected 

to off-target effects. The study shows that the approach can discriminate between idiosyncratically toxic 

and safe medications, which helps anticipate drug toxicity. TargeTox can be used during the early stages 

of drug development to identify possible harmful compounds. It is very helpful to create medication 

combinations with lower toxicity depictions, supporting precision medicine by customizing medication 

treatment based on individual toxicity profiles while decreasing side effects. Additionally, it becomes a 

useful tool for finding potentially dangerous substances and constructing low-toxicity combinations 

from its use of drug targets, off-targets, and biological network data as mentioned previously. This 

clearly demonstrates the practical application of machine learning in drug toxicity prediction. It provides 

a helpful tool for anticipating drug toxicity, hence improving the safety and benefit of pharmaceutical 

treatment in precision medicine [121]. 

Case Study 6: Utilizing Machine Learning for Enhanced Drug Toxicity Prediction with eToxPred 

A 2019 study by Pu et al evaluates the use of machine learning approaches in medication toxicity 

prediction, specifically eToxPred, in the context of precision medicine. eToxPred uses molecular 

fingerprints (numerical representations of molecular structures) to assess the toxicity and synthetic 

accessibility of small organic compounds, with up to 72% accuracy in toxicity prediction and a mean 

square error of 4% in synthetic accessibility estimation. eToxPred's excellent toxicity prediction 

accuracy (72%) demonstrates its reliability in identifying harmful substances early in the drug 

development process. Its capacity to assess synthetic accessibility aids in the identification of molecules 

that are both safe and practical to synthesize in a laboratory environment. It combines data from a 

variety of sources including chemical databases and biological testing and refines its prediction models 

using a training dataset of recognised compounds with established toxicity profiles. Other methods, such 

as Pred-hERG and ProTox, are also emphasized for their effectiveness in predicting cardiac toxicity and 

rodent oral toxicity. Pred-hERG detects cardiac toxicity by inhibiting hERG potassium ion channels, 

resulting in a high accurate classification rate of 0.8 and multi-class accuracy of 0.7 2. ProTox accurately 

predicts rodent oral toxicity and adverse medication responses, exceeding commercial software with 

sensitivity, specificity, and accuracy of 0.76, 0.95, and 0.75, respectively. The use of eToxPred in virtual 

screening methods helps to filter down the large number of prospective drug candidates to those with the 

https://www.mdpi.com/1660-4601/18/9/4943
https://www.life-science-alliance.org/content/1/6/e201800098.abstract
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best chance of success. eToxPred provides a double benefit in the drug development process by 

predicting toxicity as well as synthetic accessibility, guaranteeing that only safe and manufacturable 

compounds proceed. Despite their great accuracy, eToxPred and other comparable systems rely largely 

on the quality and depth of their training datasets. Incomplete or biased data can have an influence on 

the reliability of predictions.  Since biological systems are so complicated, no prediction model can be 

completely flawless, emphasizing the importance of ongoing development and validation of these 

techniques.  As AI technology advances, tools such as eToxPred will become increasingly important in 

the development of future treatments [122]. 

Case Study 7: AI-driven Innovations in Nanoparticle Drug Delivery for Cancer Therapy 

Study by K. Vora et al. 2023 demonstrates the practical application of AI in precision medicine for 

targeted drug delivery in cancer therapy. The major goal of the study was to increase knowledge and 

efficacy of nanoparticle-based medication delivery systems in cancer treatment. They used artificial 

intelligence in combination with physiologically based pharmacokinetic (PBPK) models to simulate and 

predict nanoparticle pharmacokinetics and biodistribution. PBPK models are complex tools that employ 

mathematical descriptions of physiological processes to forecast drug movement in the body. Integrating 

AI into these models enables more accurate forecasts and optimisations. Large datasets were analyzed 

using AI algorithms, including the biological and chemical aspects of nanoparticles. These algorithms 

helped in predicting how various nanoparticle formulations would behave in the body, therefore 

determining the best qualities for successful cancer targeting. The size of nanoparticles, as well as their 

surface charge and surface changes, were shown to be effective in targeting tumors using nanoparticle 

formulations. Nanoparticles of optimized sizes, typically in the 10-100 nm range, can aggregate 

efficiently in tumor tissues due to the EPR effect. Surface charge is extremely significant, and a 

modestly positive surface charge can improve cellular absorption. Surface modification by biological 

ligands such as antibodies or peptides results in specific binding to tumor cell receptors, allowing for 

targeted administration. The combination of AI and PBPK models dramatically enhanced our knowledge 

of nanoparticle biodistribution, resulting in more effective cancer targeting. The study discovered that 

AI-driven models could predict and optimize nanoparticle distribution to tumor areas more precisely 

than traditional techniques. AI algorithms were important in optimizing the physicochemical 

characteristics of nanoparticle compositions. The study found that AI could accurately predict drug-drug 

interactions (DDIs), which is important for creating combination medicines in cancer therapy. This 

predictive capability optimizes the drug development process, enhancing safety profiles and reducing 

time-to-market for novel medicines. AI models anticipate medication behavior with great accuracy, 

allowing for more specific targeting of cancer cells. This precision improves therapeutic results because 

medicines may be tailored to attack cancer cells while minimizing adverse effects on healthy tissues. AI 

improves research and development procedures, cutting costs and time connected with medication 

development. It aids in experimental design, lead compound optimisation, and minimizes the need for 

lengthy animal testing by precisely predicting pharmacokinetics and toxicity. As AI technology 

advances, its applications in targeted administration of drugs are expected to grow offering up 

possibilities for innovation in cancer therapy [123]. 

Case study 8. Deep neural networks (DNNs) for prostate cancer discovery 

Advances in interpretability of machine learning models made in recent years enable discovery and pre-  

https://link.springer.com/article/10.1186/s40360-018-0282-6
https://www.mdpi.com/1999-4923/15/7/1916
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diction in clinical cancer genomics, which was verified by the study conducted by Haitham et al. (2021). 

Haitham et al.  developed a deep-learning predictive model that incorporates previous biologically 

established hierarchical knowledge in a neural network language for cancer state prediction in patients 

diagnosed with prostate cancer based on their genomic profiles. A set of 3,007 curated biological 

pathways were used to build a pathway-aware multi-layered hierarchical network (P-NET) and a set of 

1,013 prostate cancers (333 castrate-resistant prostate cancers (CRPCs) and 680 primary cancers) were 

used to train and test P-NET. P-NET is a neural network algorithm that encodes various biological 

entities into a neural network language consisting of consecutive layers (i.e. features from patient 

profile, genes, pathways, biological processes and outcome) with customized connections between each 

of layers. The trained P-NET outperformed typical machine learning models including decision tree, 

random forest, and linear and radial functional support vector machine (area under the receiver operating 

characteristic(ROC) curve(AUC)=0.93, area under the precision-recall curve (AUPRC)=0.88, 

accuracy=0.83). Moreover, P-NET demonstrated its capability of generalization when classifying unseen 

samples by achieving 73% true-negative rate (TN) and 80% true-positive rate (TP) using two 

independent external validation cohorts. That is, the trained P-NET model correctly classified 73% of 

the primary tumors and 80% of the metastatic tumors. P-NET explicitly reduced the number of 

parameters for learning which have posed the challenges and successfully improved interpretability. 

They demonstrated that biologically informed deep neural networks such as P-NET they trained 

represent a novel approach to integrating cancer biology with machine learning by building mechanistic 

predictive models, providing a platform for biological discovery that may be widely applicable 

throughout cancer prediction and discovery tasks [124]. 

Case study 9. The systematic approach Machine Learning (ML) and Artificial Intelligence (AI) 

models use within the healthcare field 

New models have been and created in ways that speed up the process of finding accurate predictions 

using new systematic approaches. Decision Trees, Random Forest, Support Vector Machines, and 

Artificial Neural Networks are a few examples of ML models that implement supervised learning 

techniques. Decision tree Models create a decision support tool that starts with a singular node and 

identifies the multitude of branching outcomes of one decision.  The model then goes on to repeat 

finding outcomes of decisions using each previous product to identify a final product . Support Vector 

Machines are a type of classification model that uses supervised learning to identify features in two 

group situations by finding the largest marginal hyperplane to segregate the data, then sorts it out. 

Artificial Neural Networks are made up of an input layer, one or more hidden layers, and output layers. 

In these layers functional neurons in a singular layer are connected to every neuron in each level before 

or after . Some unsupervised learning models include the k-Means algorithm, Deep Belief Networks, 

and Convolutional Neural Networks. The most well known unsupervised learning model is the K-Means 

model that is used to identify the mean between groups of unlabeled data sets and create groups based on 

the mean. A Deep Belief Network (DBN) is a multi-layer network consisting of Indra-level connections 

useful for data retrieval that normally utilizes unsupervised learning and consists of many hidden layers 

tasked with feature detection and identifying correlations within the data. A Convolutional Neural 

Network (CNN) is a multilayer network that relies on feature recognition and identification and is useful 

for anomaly detection, image recognition, and identification [125]. Before these models may contribute 

https://www.nature.com/articles/s41586-021-03922-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822225/
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to anything, there are certain steps that must be taken for the model to use the data provided. Data 

collection is the first stage, involving the collection of relevant data from various sources such as 

databases or sensors. The data consists of case scenarios organized and grouped according to specific 

criteria that are relevant to decision making. The second stage, Data pre-processing and cleaning is 

tasked with handling any missing values, outliers, noise, and inconsistencies. Data processing techniques 

may include data cleaning, normalization, feature scaling, encoding categorical variables, and 

dimensionality reduction. Feature engineering involves selecting, transforming, and creating new 

features from raw data to enhance the performance of Machine Learning models. This may include 

extracting meaningful features from raw data, combining multiple features, or generating new features 

using domain knowledge. Data modeling is a crucial part of the architecture, as it aims to build a model 

capable of learning patterns and relationships between input features and output labels. Model evaluation 

is the final stage. A post training model is sent to evaluation, it is evaluated using a validation set in 

order to assess its performance on unseen data. The best model is then chosen from among those that 

have been evaluated. After the final stage has been completed, the best model is ready to be used in a 

healthcare setting [126].   

B. System Architecture 

Data Collection 

Refers to the process that carries the inputs necessary to understand the biological traits of each 

individual. During this initial phase, a wide range of individual data is gathered and stored, namely 

clinical, genetic, biomarker, and lifestyle data. [127]. Furthermore, biobanks hold significant 

importance as digital biorepositories, enabling the identification of reliable biomarkers for 

implementing precision medicine techniques [128].  

Data Analytics 

Allows the identification of anomalies or heterogeneity in data to pre-process them by filtering out 

inconsistent and incorrect data [129]. After that, the clinical data are standardized, which in turn fuses 

them further for analysis. Respectively, the most promising and popular technique at this stage is 

clustering [130]. This method classifies a dataset into subgroups of instances with similar components to 

each other by making use of high-throughput molecular technology [131]. Hence, this high-dimensional 

molecular data and the evolutionary progress of diseases can therefore be subdivided into more 

homogeneous groups of data belonging to patients suffering from complex diseases. Clustering 

techniques have been applied in the field of microbiomics for the amplification of hypervariable 

fragments of bacterial 16S rRNA genes, which are subsequenced before their extrapolation to taxonomic 

units [132]. This practice, hence allows labeling and understanding of drug interactions by bacteria in 

various human microbiomes. For example, digoxin is inactivated under the influence of some specific 

gut bacteria [132]; so getting the complete profile of the microbiome accelerates personalized and 

preventive drug treatment creation against side effects. This develops an interest in data analysis using 

the clustering technique. In this case, since the microbiome modifies a person's metabolome and 

epigenome, the clustering technique to capture classified microbiome profiles is of paramount 

importance in precision medicine [14]. This phase is critical since it determines the quality of the data 

and, therefore, the quality of the individual cure. 

 

https://www.mdpi.com/2078-2489/15/4/235
https://erj.ersjournals.com/content/50/4/1700391.short
https://pubmed.ncbi.nlm.nih.gov/34807351/
https://link.springer.com/article/10.1186/s41044-016-0014-0
https://www.sciencedirect.com/science/article/pii/S1532046418301072
https://onlinelibrary.wiley.com/doi/full/10.1111/joim.13640
https://www.mdpi.com/2072-6694/15/15/3837#B53-cancers-15-03837
https://www.mdpi.com/2072-6694/15/15/3837#B53-cancers-15-03837
https://www.sciencedirect.com/science/article/abs/pii/S0377123721001672?via%3Dihub
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Model Development and Validation 

Data mining is considered to be the extraction of useful information from complex, stratified databases. 

Big data mining, in particular, as a technique for bioinformatics, has shown to be a process beneficial 

for populations in a myriad of diseases [133]. Analysis of data is done in such a way that it identifies 

risks and opportunities, therefore unleashing the patterns and knowledge of genes and their relations 

with the natural evolution of disease to produce more pragmatic knowledge  [134]. Hence, this novel 

process has impacted breast and ovarian cancer research in that it facilitates the discovery of BRCA1 

and BRCA2 genes that affect the abrupt growth of these cancers such that physicians can order BRCA1 

and BRCA2 tests based on family and personal history to reduce their chances of acquiring these 

cancers [135]. Having a more fundamental understanding of the data collected, several parallel models 

are developed which are declared accurate if they truly generalize and respond inclusively to the 

unknown data; if this standard is not met, these models are continuously trained until they show to meet 

the established parameters. Model validation in the field of precision medicine should take place by 

applying the existing rules regarding good data quality and openness with performance assessment 

within rigorous testing and appropriate licensing [136]. Once these models get validated, they are 

catered into clinical practice as part of a decision support systems. 

Decision Support System 

The Decision Support System (DSS) employs integrated data and models which functions to assist 

physicians in making decisions by supplying proposals grounded on an individual patient’s unique 

clinical as well as personal history. Those systems have turned out to be a breakthrough since they offer 

structured and understandable information with access to medical literature while at the same time 

dealing with problems related to information overflow, and little human memory, hence cutting down 

on costs through better diagnoses and prognoses; they allow questions to be asked about aggregated 

patient data, and they provide warnings and suggestions about clinical decisions [137]. In the context of 

advancing genomic technologies in pediatric care, a DSS has been developed around neonatal genetic 

screening for pediatric cancer. This system integrates clinical, genetic, and epidemiological data to 

assist physicians in the interpretation of genomic screening results to improve the early detection and 

treatment of patients prone to contracting this disease [138]. 

Patient Participation 

Patient concerns and uncertainties are addressed to avoid problems related to resistance to the adoption 

of these technologies [139]. As a result, detailed ethical terms and conditions policies should be 

established to provide patients with confidence in the use and privacy of their personal information and 

the results of subsequent analyses. Moreover, achieving the above will prompt patients to be actively 

involved in these personalized therapies to decentralize and versatilize these technologies. To illustrate, 

Mikhaylova and Thornton demonstrated that the performance of PrediXcan (a popular statistical 

method in precision medicine) differs according to the geographic origin of the population, with the 

rate being lower in populations of African descent compared to other populations of European descent 

[140]. Indeed, if a model is developed and trained on a given range of data, its application is not likely 

to be transferable to other populations. Some of the factors that make the universal application of these  

 

https://www.researchgate.net/profile/Saloni-Verma-2/publication/381635642_Applications_of_CMUT_Technology_in_Medical_Diagnostics_From_Photoacoustic_to_Ultrasonic_Imaging/links/667708111846ca33b84556ff/Applications-of-CMUT-Technology-in-Medical-Diagnostics-From-Photoacoustic-to-Ultrasonic-Imaging.pdf
https://www.sciencedirect.com/science/article/abs/pii/B9780128244104000076
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868394/
https://www.mdpi.com/2075-4426/12/2/166
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Figure 4. System architecture for machine learning models 

 

models impossible are differences in allele frequency, linkage disequilibrium, and genetic admixture 

[141]. Nevertheless, precision medicine interoperability emerges as a possible solution to this concern.  

System Interoperability 

Interoperability encompasses making various software and data storage systems share information 

consistently, effectively, and responsibly [142]. To ensure that precision medicine maximizes its results 

for each patient, global intersectional data-sharing guidelines between different institutions promoting 

these types of computational advances are required as a precondition. However, there is still a noticeable 

fragmentation of policy among leading data warehousing organizations [143]. The four types of 

interoperability that should prevail in the data-sharing ecosystem are technical interoperability (data 

exchange between computer systems), syntactic interoperability (structure and format of the exchanged 

data), semantic interoperability (meaning of the shared data), and organizational interoperability 

(adoption of policies and guidelines) [144]. Therefore, the government plays an essential role in 

promoting data security standards, surveillance systems, and simultaneous multidisciplinary 

collaboration with the public and private sectors [145]. This is the only way to optimize and democratize 

precision medicine for the global population (Figure 4). 

C. Ethical Considerations 

Informed Consent 

One such consideration is the act of garnering informed consent from patients.  The ethical dilemma 

here would be ensuring the full understanding of patients and taking careful measures not to pressure 

them into giving consent. Informed consent is made up of three distinct constructs [146]. The first of 

which states that all information and risks involved in the study must be explained to its participants, 

regardless of the effect it may have on their willingness to contribute. The second construct says that 

participants must be fully able to understand the risks which come with participation in the study, and 

https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2020.00875/full
https://pubmed.ncbi.nlm.nih.gov/16475733/
https://link.springer.com/article/10.1186/s13073-016-0388-7
https://www.nature.com/articles/s41746-019-0158-1
https://pubmed.ncbi.nlm.nih.gov/30529579/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182686/
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the information which has been divulged to them by researchers. The third construction demands that the 

participant has the option of voluntary consent which refers to the ability of an individual to join or leave 

a study. Although informed consent is applicable in most cases, in precision medicine oriented settings, 

which use tools such as big data, it becomes harder for participants to fully understand the scope of the 

data presented to them. This is especially prevalent in pharmacogenetic (PGx) testing. PGx testing 

examines the likelihood of an individual to display a negative or positive response to a drug, allowing 

for drug selection to be more tailored to the beneficiary [147]. As such complex tests can be difficult to 

explain to patients, it makes it harder for researchers to gain informed consent. This poses a new 

challenge for researchers who must find new, more effective ways of gaining consent to continue their 

research in an ethical manner.  

Data-Driven Doctor-Patient Relationship 

In the physician-patient relationship there are two roles, the sick patient and the physician [148]. In a 

setting which does not use precision medicine methods, the patient would normally come to the 

physician with a problem. The physician, on their part, would do their best to remedy the issue be it 

through diagnosis, referral, disconfirmation, or various medical methods [148]. When the doctor-patient 

relationship is used in precision medicine, though, the sick role becomes more ambiguous. As precision 

medicine relies on analyzing risk factors and trying to target diseases before they occur, patients are no 

longer classified as simply sick, but bear more similarity to patients-in-waiting. This is a state of 

uncertainty when it is unclear if or when an individual will develop a condition. This leads to increasing 

levels of anxiety in which individuals are unsure if they are healthy or sick [148]. As precision medicine 

also utilizes data about  an individual’s environment and lifestyle, a patient’s anonymity may be 

compromised. Furthermore, the role of a patient may become more similar to that of a research 

participant, contributing to an ethical wrong on the patient’s behalf. Meanwhile, physicians will begin to 

lose control of what data is revealed about their patients, leading to distrust between patients and doctors 

[148]. As the medical field becomes more data oriented, it poses the risk of dehumanizing patients, 

distilling them into data on a screen.  

Clinical Benefit & Evidence for new Precision Medicine tests 

In clinical settings, it takes time for evidence to be used to produce new precision medicine tests [149]. 

When deciding how to produce new tests, clinicians determine if the test will sufficiently benefit the 

patients under their care, posing the third ethical challenge of implementing precision medicine. Other 

factors used to determine sufficiency include the estimated benefit, pre-existing alternative treatments, 

and potential negative effects. In situations where evidence is limited but need for a new treatment is 

high, a consideration would be to implement clinical intervention and introduce the test in some clinical 

settings while normal treatment is offered in other institutions. Furthermore, the implementation of 

precision medicine includes its own benefits and risks, by thoughtfully addressing any ethical concerns, 

immorality will be effectively mitigated.   

D. Challenges and Limitations 

Models in machine learning are beginning to unleash their potential in precision medicine. These 

developments have outperformed the classical techniques of improved prediction accuracy and 

efficiently made successful classifications. Not only that, they also enable personalized treatments by 

merging algorithms trained with huge, complicated datasets that were impossible to be attained by the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5220438/#S0009title
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500897/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500897/
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traditional ways. They have been drawing attention, especially in complex and heterogeneous diseases 

like cardiovascular diseases and neurodegenerative diseases that require revolutionary approaches.  

There are several limitations to data-driven models: dependence on data, no transparency, higher 

computational cost, which also opens up security vulnerabilities. Since they learn from the data they are 

trained for, they inherit biases if they exist in the data itself. This creates a situation with potentially 

inaccurate or unfair results for groups underrepresented in the training data. On the other hand, in some 

such models, it’s difficult to understand the reasons behind their predictions; this can make it hard to 

address errors or bias. Depending on the complexity, machine learning models can be costly because 

they could require a lot of computing resources. Also, they are prone to malicious attacks and can pose 

risks to data privacy because they often involve sensitive data, and security breaches or leaks can have 

serious consequences. 

One of the most traditional problems throughout every field in machine learning is overfitting, which 

alludes to the prediction errors that occur for data sets lacking training. However, besides overfitting, 

there are several issues that are slightly different depending on certain domains. In drug toxicity 

prediction, model accuracy and generalization quality depend heavily on training data quality and 

diversity, while issues like class imbalance, validation accuracy and noisy labels remain big obstacles. In 

implementing big data approaches within cardiovascular medicine, several issues remain: data quality; 

integration of data from different healthcare systems; privacy and ethical concerns in the use of personal 

health data, and cause-result relationship determination from observational and retrospective data.  

Moreover, interpretability and transparency in the big data analytics models are essential factors to foster 

clinician trust and their adoption in clinical practice. AI in targeted drug delivery in cancer therapy 

remains a difficulty due to data bias in respect of ethnicity, data acquisition by independent institutes, 

code sharing for reproducibility, and integration across multiple sources. The complexity of cancer 

biology and the dynamic nature of tumor evolution increases the challenges even more. 

The basic requirements for the safety and efficiency of AI-guided treatment strategies will have to be 

matched by rigorous validation and clinical trials. Data isolation, reproducibility, and data sparseness, as 

well as the complexity of the brain and the multifactorial nature of these diseases, are providing 

significant obstacles for computational techniques in neurodegenerative diseases. Collaboration between 

computational scientists, neurologists, and biologists is an important aspect to effectively translate these 

techniques into clinical practice and needs to be promoted in further studies. 

Although the clustering technique facilitates the stratification of multimodal medical data into more 

homogeneous groups, a challenge in its implementation, “the curse of dimensionality”, remains latent. 

This obstacle alludes to the creation of blind spots (regions with missing values and samples) during big 

data clustering [150]. This occurs due to the disproportionate increase in the dimensionality of the data 

(features and types), since if the algorithm detects a new category in the data set, by nature, it will 

generate a new classification with a vague variety of data to train itself to perform timely and accurately 

in clinical practices. As for the big data mining technique, there is an inherent challenge that limits the 

capability of this method. It is the heterogeneity in the format of previously classified databases since 

extrapolating mixed data (email attachments, images, pdf documents, medical records, X-rays, voice 

mails, graphics, video, audio, etc) to a standard format requires sophisticated software that has not yet 

been explored. [151]. This entails deficiencies in the development of computational models based on big 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553745/
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data, affecting the increase in the speed of response in clinical situations that require immediate analysis 

without compromising the quality of the results. Regarding the DSSs, evidence has shown them to be an 

excellent support in advancing the quality and specificity of treatments. However, the current human-

computer interface (HCI) paradigm lacks a responsive and interactive digital environment that is adapted 

to specific clinical scenarios. [152]. A gap that constrains the prevention of errors of omission and 

commission in the framework of precision medicine is the development of HCIs that allow clinicians to 

be reminded of aspects they have overlooked, including requested as well as unrequested suggestions, so 

that these systems are independent to intercede when necessary, but without going to the extent of being 

intrusive. The need for inclusivity practices was also identified as a diligent and concomitant factor in 

precision medicine, as this will trigger equitable and beneficial services for any individual. Analogously, 

some healthcare system firms still refuse to change their traditional paper-based system records to 

electronic health systems [153], making this resistance impossible to fully embrace the principles of 

interoperability, as these hand-written data are being excluded. In the same way, despite efforts to 

achieve semantic interoperability in the healthcare domain, a myriad of incompatible ontologies and 

terminologies are still emerging [154]. This significantly interferes with the smooth exchange of data, as 

multiple meanings are being attributed to similar clinical expressions. 

The preservation of anonymity is crucial for the integration of precision medicine as the amount of data 

collected for research increases. Data can be gained from electronic medical records, lifestyle choices, or 

other devices used to monitor health. This expansion of information gathering can lead to a loss of 

control over where data goes. These new technologies had allowed it to become easier for doctors and 

researchers to access previously off-limit information, resulting in less patient anonymity. When 

gathering data it has become harder to do so ethically with the challenges posed by informed consent. 

Because informed consent requires patients to understand all aspects of a test or treatment, data becomes 

more difficult to obtain. This leads to using alternative forms of consent which can be more invasive into 

a patient’s privacy and medical health. Finally, it is important to consider the effects that precision 

medicine has on the doctor-patient relationship. As precision medicine becomes more prominent and 

based in data analysis, it runs the risk of focusing less on patient care and more on analytics. This can 

negatively affect patients by increasing the amount of data they must understand, contributing to stress, 

and endangering the sense of safety and privacy commonly shared by doctors and patients. At this point, 

the question moves on to seeking another solution aside from ide-identification, which can be easily re-

identified in a variety of ways. We believe that further discovery to address the data privacy issues 

should be pursued in the future. 

 

2.  Conclusion 

Utilizing data-driven techniques has become critical for improving precision medicine procedures. This 

review examines the obstacles and solutions of incorporating computational approaches into healthcare 

settings. We discuss the importance of modeling in healthcare, highlighting the limitations of traditional 

techniques, and the potential benefits of data-driven methodology. Data-driven approaches such as ML 

and deep learning algorithms are significant in various scopes of precision medicine including drug 

discovery, cardiovascular diseases, and neurodegenerative diseases. Researchers utilize a variety of data 

types to create ML models for precision medicine, which adhere to a structured system architecture from 

https://www.sciencedirect.com/science/article/pii/S1532046407001049
https://www.crowell.com/a/web/9GkdjVhUuLs35YDxqnmk1X/4TtizN/2005-July_Quest_for_EHRs_Butler.pdf
http://bio3.giga.ulg.ac.be/record/wp-content/uploads/2022/11/Interoperability-in-Healthcare.pdf
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data collection to patient interaction in personalized treatment. Aspects such as the use of Decision 

Support Systems, patient engagement, and worldwide data-sharing standards illustrate the need for 

collaboration in improving global health outcomes [136]. Implementing data-driven models or 

computer-generated decisions in a healthcare setting is a complex strategy that raises numerous ethical 

concerns such as informed consent, physician-patient relationships, and patient autonomy. While 

medical science becomes more data-driven, it drives patients to the periphery and makes them no more 

than statistics on a computer screen [149]. Despite the positive advances in the field of AI and ML, the 

obstacles including the lack of interpretation capability, vulnerable data security, high dependency on 

data quality, etc, still inhibit possibilities for progress. The sample size of the studies considered within 

the applications of precision medicine is limited; therefore, the findings and results represent a partial 

view of the present field of study, as other fields of application in infectious, respiratory, and endocrine 

diseases were not explored. These recent advancements in data-based modeling will only give rise to 

more accurate and personalized treatments. Our proposed system architecture and machine learning 

algorithms have been evaluated only in select areas (e.g., medication toxicity prediction, cardiovascular 

medicine, cancer therapy, neurodegenerative illnesses) and on a small number of data sets. This reduces 

the theoretical generalizability of our findings. Also, potential biases in the data and research used to 

train and validate the ML models can have an influence on their robustness and application to larger, 

more varied populations. The perspective-based methodology used to analyze external studies implies 

the existence of biased and subjective interpretations throughout the research, adding to the fact that our 

personal experience and knowledge may have influenced scientific observations and conclusions. 

However, this obstacle is universal due to the open-ended nature of this research format [155]. In 

particular, the system architecture was designed based on logical and hierarchical criteria, since no other 

studies associated with the integration flow of a computational advance within precision medicine were 

found, therefore, the proposed system architecture model is subjective and its applicability may differ 

from other scenarios and practices in the field. Furthermore, another limitation in the study is that we 

brought up the creation process of ML models, rather than drilling down into how ML models are 

developed fundamentally since we have adopted a focus toward explaining ML models’ outcomes, 

applications, advantages, and disadvantages. Expanding research in precision medicine will improve 

treatment accuracy and personalized care, despite the inherent limitations and diverse application of 

computational advancements in different situations. Based on current status and development that has 

been made in recent decades elucidated in our review, exploring in-depth integration of machine 

learning for precision medicine and constructing system modeling methods for different algorithms for 

real world applications are suggested in later work. As much as data-driven methods are illuminated, 

real-world data collection and storage ought to be improved, such as complete utilization of EHRs by 

addressing their noises, sparseness, and inconsistency that have prevented them from making a 

significant contribution as one of the most abundant patient health data resources. Particularly for 

implementation of machine learning models in clinical settings, robust validation criteria and parameters 

based on professional judgment and real world statistical model performance should necessarily be 

defined. Model creation for prediction and diagnosis  appears to be focused rather than its evaluation. 

Few published research went beyond the empirical reports and described patient tests conducted in real 

world operation but even those studies did not provide detailed specifics about their processes for 

https://www.mdpi.com/2075-4426/12/2/166
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217469/
https://www.ncbi.nlm.nih.gov/books/NBK470395/


 

Advanced International Journal of Multidisciplinary Research 
  

E-ISSN: 2584-0487                                                                                                                editor@aijmr.com 
 

Volume 2, Issue 5, September-October 2024 
 

CrossRef DOI: 10.62127/aijmr.2024.v02i05.1077 
 

 

AIJMR24051077 Advanced International Journal of Multidisciplinary Research (www.aijmr.com) 34 
 

models. It remains problematic especially due to the critical nature of the health industry that mistakes 

could put patients into death. Thus, in order to improve reliability, a great amount of attention should be 

focused on continuous model evaluation and monitoring. 
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